factorise: a2 + (p + 1/p) a + 1. ( step by step explanation)
Answers
Answered by
0
Answer:
Step-by-step explanation:
a²+(p+1/p)a+1=0 → a²+a(p²/p+1/p)+1
By Shreedharacharya's rule,
a= {-(p+1/p)±√[(p²+1/p²+2p×1/p)-4]}/2
→a= {-(p+1/p)±√[(p²+1/p²+2-4)]}/2
→a= {-(p+1/p)±√[(p²+1/p²-2]}/2
→a= [-(p+1/p)±√(p-1/p)²]/2
→a= [-(p+1/p)±(p-1/p)]/2
→a= [(-p-1/p)±(p-1/p)]/2
→a= [(-p-1/p)+(p-1/p)]/2, [(-p-1/p)-
(p-1/p)]/ 2
→a= (-p-1/p+p-1/p)/2, (-p-1/p- p+1/p)/2
→a= (-1/p-1/p)/2, (-p-p)/2
→a= (-2/p)/2, (-2p)/2
→a= (-1/p), (-p)
Hope this helps.
Similar questions