Factorise : a3 (b-c)3 + b3 (c-a)3 -c3 (b-a)3
Answers
Answered by
90
Answer:
a³(b-c)³+b³(c-a)³-c³(b-a)³
=-3a³b³c³(b-c)³(c-a)³(b-a)³
Step-by-step explanation:
Given a³(b-c)³+b³(c-a)³-c³(b-a)³
=[a(b-c)]³+[b(c-a)]³+[-c(b-a)]³
/* We know that,
If x+y+z=0 then
x³+y³+z³=3xyz */
Here ,
x = a(b-c),
y = b(c-a),
z = -c(b-a).
Now,
x+y+z
= a(b-c)+b(c-a)+[-c(b-a)]
= ab-ac+bc-ab-bc+ac
= 0
=> [a(b-c)]³+[b(c-a)]³+[-c(b-a)]³
= x³+y³+z³
= 3xyz
=3[a(b-c)]³[b(c-a)]³[-c(b-a)]³
=-3a³b³c³(b-c)³(c-a)³(b-a)³
•••♪
Answered by
19
Answer:
3abc(b_c)(c_a)(a_b)
Similar questions