FACTORISE:-
A³-B³+1+3AB
Answers
Answer:
(a – b + 1)(a² + ab + b² – a + b + 1)
Step-by-step explanation:
Hey there,
Start by seeing that the first two terms are the difference of two cubes
a³ – b³ ≡ (a – b)(a² + ab + b²)
Hence
a³ – b³ + 1 + 3ab = (a – b)(a² + ab + b²) + 1 + 3ab
Now add 1 inside the first brackets and subtract 1 times the second brackets to leave the expression unchanged in value
a³ – b³ + 1 + 3ab = (a – b + 1)(a² + ab + b²) –1(a² + ab + b²) + 1 + 3ab
a³ – b³ + 1 + 3ab = (a – b + 1)(a² + ab + b²) – a² – ab – b² + 1 + 3ab
a³ – b³ + 1 + 3ab = (a – b + 1)(a² + ab + b²) – (a² + ab + b² – 1 – 3ab)
a³ – b³ + 1 + 3ab = (a – b + 1)(a² + ab + b²) – (a² + b² – 1 – 2ab)
Recall that (a – b)² ≡ a² – 2ab + b²
a³ – b³ + 1 + 3ab = (a – b + 1)(a² + ab + b²) – ((a – b)² – 1)
Now see the difference of two squares
((a – b)² – 1) = ((a – b)² – 1²) = (a – b + 1)(a – b – 1)
Hence
a³ – b³ + 1 + 3ab = (a – b + 1)(a² + ab + b²) – (a – b + 1)(a – b – 1)
Take out the common factor which is (a – b + 1)
a³ – b³ + 1 + 3ab = (a – b + 1)[(a² + ab + b²) – (a – b – 1)]
Simplify
a³ – b³ + 1 + 3ab = (a – b + 1)(a² + ab + b² – a + b + 1)
Hope this helps!
Answer:
using identity ->
x^3+y^3+z^3–3.x.y.z =(x+y+z) (x^2+y^2+z^2-xy-yz-zx).
a³-b³+1+3ab
=(a)^3 +(-b)^3 + (1)^3 -3.a.(-b).1
=[a+(-b,)+1] [(a)^2+((- b)^2+(1)^2-a.(- b)-(-b).1- 1.a]
=(a-b+1) (a^2+b^2+1+a.b+b-a)