Factorise a³ + b³ + c³ - 3abc.
Answers
Answered by
2
Factorise a³ + b³ + c³ - 3abc.
Good question,
Here is your perfect answer!
Solve LHS,
= (a³+b³) + c³ - 3abc
= {(a+b)³ - 3ab(a+b)} + c³ - 3abc
Let a+b be n.
= (n³ - 3abn + c³ - 3abc)
= (n³ + c³) - 3abc - 3abn
= (n+c) (n² - nc + c²) - 3ab(n+c)
= (n+c) (n² - nc + c² - 3ab)
Put n = a+b,
= (a+b+c) (a ² + b² + 2ab - (a+b) c + c²-3 ab)
= (a+b+c) (a² + b² + c² - ab - bc - ac).
Answered by
0
(a+b+c)(a square +b square+c square-ab-bc-ac)
hope it helps you
hope it helps you
Similar questions