factorise. a3x2+2abx3+b3x
Answers
Answered by
4
\begin{gathered} {a}^{3} {x}^{3} - 3 {a}^{2} b {x}^{2} + 3a {b}^{2} x - {b}^{3 } \\ compare \: this \: expression \: with \: the \: identity \\ ( {x - y)}^{3} = {x}^{3} - 3 {x}^{2} y + 3x {y}^{2} - {y}^{3} \\ so \\ ( {ax)}^{3} - 3( {ax)}^{2} y + 3ax {y}^{2} - ( {y)}^{3} \\ = ( {ax - b)}^{3} \\ so \: factors \: are \: (ax - b)(ax - b)(ax - b)\end{gathered}
a
3
x
3
−3a
2
bx
2
+3ab
2
x−b
3
comparethisexpressionwiththeidentity
(x−y)
3
=x
3
−3x
2
y+3xy
2
−y
3
so
(ax)
3
−3(ax)
2
y+3axy
2
−(y)
3
=(ax−b)
3
sofactorsare(ax−b)(ax−b)(ax−b)
Answered by
2
thanks for your free points
Similar questions