Math, asked by rohit2912, 10 months ago

factorise a⁴-(a-b)⁴​

Answers

Answered by Anonymous
5

Answer:

We know, (a+b)⁴ = a⁴+4a³b+6a²b²+4ab³+b⁴

Also, (a-b)⁴ = a⁴-4a³b+6a²b²-4ab³+b⁴

So, (a+b)⁴-(a-b)⁴

= a⁴+4a³b+6a²b²+4ab³+b⁴-a⁴+4a³b-6a²b+4ab³-b⁴

= 8 a³b + 8 ab³

= 8ab(a²+b²) [Answer]

Answered by pinquancaro
6

The factories form is a^4-(a-b)^4=(2a^2+b^2-2ab)(2a-b)(-b)

Step-by-step explanation:

Given : Expression a^4-(a-b)^4

To find : Factories the expression ?

Solution :

Re-write the expression as,

a^4-(a-b)^4=(a^2)^2-((a-b)^2)^2

Using algebraic identity, a^2-b^2=(a+b)(a-b)

a^4-(a-b)^4=(a^2+(a-b)^2)(a^2-(a-b)^2)

Again using same identity,

a^4-(a-b)^4=(a^2+a^2+b^2-2ab)(a+(a-b))(a-(a-b))

a^4-(a-b)^4=(2a^2+b^2-2ab)(2a-b)(-b)

Therefore, the factories form is a^4-(a-b)^4=(2a^2+b^2-2ab)(2a-b)(-b)

#Learn more

(b+c) /(a-b) (a-c) +(c+a) /(b+a) (b-c) +(a+b) /(c-a) (c-b)

https://brainly.in/question/4185399

Similar questions