Math, asked by xhypen, 6 months ago

factorise a⁴ - (a-b)⁴ ​

Answers

Answered by arunkumarfzd33
0

Step-by-step explanation:

The factories form is a^4-(a-b)^4=(2a^2+b^2-2ab)(2a-b)(-b)a

4

−(a−b)

4

=(2a

2

+b

2

−2ab)(2a−b)(−b)

Step-by-step explanation:

Given : Expression a^4-(a-b)^4a

4

−(a−b)

4

To find : Factories the expression ?

Solution :

Re-write the expression as,

a^4-(a-b)^4=(a^2)^2-((a-b)^2)^2a

4

−(a−b)

4

=(a

2

)

2

−((a−b)

2

)

2

Using algebraic identity, a^2-b^2=(a+b)(a-b)a

2

−b

2

=(a+b)(a−b)

a^4-(a-b)^4=(a^2+(a-b)^2)(a^2-(a-b)^2)a

4

−(a−b)

4

=(a

2

+(a−b)

2

)(a

2

−(a−b)

2

)

Again using same identity,

a^4-(a-b)^4=(a^2+a^2+b^2-2ab)(a+(a-b))(a-(a-b))a

4

−(a−b)

4

=(a

2

+a

2

+b

2

−2ab)(a+(a−b))(a−(a−b))

a^4-(a-b)^4=(2a^2+b^2-2ab)(2a-b)(-b)a

4

−(a−b)

4

=(2a

2

+b

2

−2ab)(2a−b)(−b)

Therefore, the factories form is a^4-(a-b)^4=(2a^2+b^2-2ab)(2a-b)(-b)a

4

−(a−b)

4

=(2a

2

+b

2

−2ab)(2a−b)(−b)

Similar questions