Math, asked by anindyaadhikari13, 4 months ago

Factorise.
a⁶ + 5a² + 8

Do it quickly. Urgent.​

Answers

Answered by user0888
9

Over Reals

The range of the function is a^6+5a^2+8\geq 8, so the graph doesn't meet the x-axis above it.

Hence, no point of intersection or no real zero.

It is irreducible over reals.

Over Complex

Let's factorize a^6+5a^2+8 in a cubic polynomial.

Let t=a^2.

\implies t^3+5t+8

This is a depressed cubic, which quadratic coefficient is 0.

Let's attempt to find the solutions via Cardano's method.

Cardano's Method

Two main ideas are

  • Every cubic can be expressed in a depressed cubic.
  • (a+b)^3-3ab(a+b)=a^3+b^3

The second identity (a+b)^3-3ab(a+b)=a^3+b^3 is a well-known one.

It can explain that one of the solutions is t=a+b, then the equation we are solving is t^3-3abt=a^3+b^3.

Hence, solving the depressed cubic t^3+px+q=0 means finding p and q such that

  • p=3ab
  • q=-a^3-b^3

We deduce

  • a^3b^3=-\dfrac{p^3}{27}
  • a^3+b^3=-q

Now, we can find the quadratic equation, which roots are a^3 and b^3.

We can solve X^2+qX-\dfrac{p^3}{27} =0.

However, the solutions for X are the perfect cube of a and b.

(Let a^3=\alpha and b^3=\beta for convenience.)

  • a=\sqrt[3]{\alpha } \omega ,\sqrt[3]{\alpha } \omega ^2,\sqrt[3]{\alpha }
  • b=\sqrt[3]{\beta } \omega ,\sqrt[3]{\beta } \omega ^2, \sqrt[3]{\beta }

Since p is a real number we find pairs of a and b via p=3ab, \omega^3=1.

  • a=\sqrt[3]{\alpha } and b=\sqrt[3]{\beta }
  • a=\sqrt[3]{\alpha } \omega and b=\sqrt[3]{\beta } \omega^2
  • a=\sqrt[3]{\alpha } \omega^2 and b=\sqrt[3]{\beta } \omega

As t=a+b, our solutions are t=\sqrt[3]{\alpha } +\sqrt[3]{\beta }, t=\sqrt[3]{\alpha }\omega +\sqrt[3]{\beta }\omega^2, t=\sqrt[3]{\alpha } \omega^2+\sqrt[3]{\beta } \omega.

Application

Now we can use this to solve our problem.

Given: t^3+5t+8

General depressed cubic form: t^3+pt+q

  • p=5
  • q=8

Quadratic equation: X^2+9X-\dfrac{125}{27} =0

\implies 27X^2+243X-125=0

\implies X =\dfrac{-243\pm \sqrt{72549} }{54}

According to the method mentioned above, the solutions are t=\sqrt[3]{\alpha } +\sqrt[3]{\beta }, t=\sqrt[3]{\alpha }\omega +\sqrt[3]{\beta }\omega^2, or t=\sqrt[3]{\alpha } \omega^2+\sqrt[3]{\beta } \omega. / \alpha and \beta are two solutions for X.

Hence our solutions for t are

  • t=\sqrt[3]{\dfrac{-243+ \sqrt{72549} }{54}}+\sqrt[3]{\dfrac{-243- \sqrt{72549} }{54}} or
  • t=\sqrt[3]{\dfrac{-243+ \sqrt{72549} }{54}}\omega +\sqrt[3]{\dfrac{-243- \sqrt{72549} }{54}}\omega^2 or
  • t=\sqrt[3]{\dfrac{-243+ \sqrt{72549} }{54}}\omega ^2+\sqrt[3]{\dfrac{-243- \sqrt{72549} }{54}}\omega.

Answer

After we substitute t=a^2 back in, the six factors are

(a+\sqrt{\sqrt[3]{\dfrac{-243+ \sqrt{72549} }{54}}+\sqrt[3]{\dfrac{-243- \sqrt{72549} }{54}}})

(a-\sqrt{\sqrt[3]{\dfrac{-243+ \sqrt{72549} }{54}}+\sqrt[3]{\dfrac{-243- \sqrt{72549} }{54}}})

(a+\sqrt{\sqrt[3]{\dfrac{-243+ \sqrt{72549} }{54}}\omega+\sqrt[3]{\dfrac{-243- \sqrt{72549} }{54}}\omega^2})

(a-\sqrt{\sqrt[3]{\dfrac{-243+ \sqrt{72549} }{54}}\omega+\sqrt[3]{\dfrac{-243- \sqrt{72549} }{54}}\omega^2})

(a+\sqrt{\sqrt[3]{\dfrac{-243+ \sqrt{72549} }{54}}\omega^2+\sqrt[3]{\dfrac{-243- \sqrt{72549} }{54}}\omega})

(a-\sqrt{\sqrt[3]{\dfrac{-243+ \sqrt{72549} }{54}}\omega^2+\sqrt[3]{\dfrac{-243- \sqrt{72549} }{54}}\omega})

Answered by Anonymous
63

Answer:

\huge\sf\underline\red{Question}

Factorise.

a⁶ + 5a² + 8

Do it quickly. Urgent.

\huge\sf\underline\blue{Answer}

 \tt \:  {a}^{6}  + 5 {a}^{2}  + 8 \\  \tt  { ({a}^{2}) }^{ 3}  + 5 {a}^{3} +  ( {2})^{3}  \\ \tt  { ({a}^{2}) }^{ 3}   + ( {2})^{3}  + 5 {a}^{3}  \\ \tt  { ({a}^{2}) }^{ 3}   + ( {2})^{3} -  {a}^{3}  + 6 {a}^{3}

\tt  { ({a}^{2}) }^{ 3}   + ( {2})^{3} + ( -  {a}^{3} )  - 3( {a}^{2} )(2)( - a) \\  \tt \:  ({a}^{2}  + 2 + ( -  {a}^{2} ))(( {a}^{2} ) ^{2}  + ( {2})^{2}  + (  { - a})^{2}  - ( {a}^{2} )(2) - 2( - a) - (  a)( {a}^{2} ))

 \tt  \:  ({a}^{2}  + 2 - a)( {a}^{4}  + 4 +  {a}^{2}  -  {2a}^{2}  + 2a +  {a}^{3}  \\  \tt \:  ({a}^{2}  + a + 2)( {a}^{4}  +  {a}^{3}  -  {a}^{2}  + 2a + 4)

Note: slide your screen to see the full answer!!

Similar questions