Math, asked by jiyavig2887, 4 months ago

Factorise- ab^2-(a-c)b-c pleaaseeeeee

Answers

Answered by ItzMissWitch
1

Answer:

❍ \rm \bf{Option (b),}Option(b), \boxed{\tt{\red{6\sqrt{6}\: m^{2}}}}66m2

\:

Gɪᴠᴇɴ :-

\:

\begin{gathered}\begin{gathered} ❍ \:\rm \bf Sides \begin{cases} & \rm{a = {5\:m}} \\ & \rm{b = {6\:m}} \\ & \rm{c = {7\:m}} \end{cases} \\\end{gathered}\end{gathered}❍Sides⎩⎪⎪⎨⎪⎪⎧a=5mb=6mc=7m

Tᴏ Fɪɴᴅ :-

\:

❍ Area of the triangle (∆).

\:

Fᴏʀᴍᴜʟᴀ :-

\:

❍ \boxed{\sf{\green{∆=\sqrt{s(s-a)(s-b)(s-c)}}}}∆=s(s−a)(s−b)(s−c)

Where, \sf \bf {\:s = \dfrac{a+b+c}{2}}s=2a+b+c

\:

Sᴏʟᴜᴛɪᴏɴ :-

\:

➪ \sf{\purple{s = \dfrac{a+b+c}{2}}}s=2a+b+c

\:

➪ \sf{\purple{s = \dfrac{5+6+7}{2}}}s=25+6+7

\:

➪ \sf{\purple{s = \dfrac{18}{2} = 9m}}s=218=9m

\:

\:

➪ \sf{\pink{∆=\sqrt{s(s-a)(s-b)(s-c)}}}∆=s(s−a)(s−b)(s−c)

\:

➪ \sf{\pink{∆=\sqrt{9(9-5)(9-6)(9-7)}}}∆=9(9−5)(9−6)(9−7)

\:

➪ \sf{\pink{∆=\sqrt{9(4)(3)(2)}}}∆=9(4)(3)(2)

\:

➪ \sf{\red{∆=\sqrt{36\times 6}}}∆=36×6

\:

➪ \sf{\pink{∆=}}∆= {\bf{\orange{6\sqrt{6} \:m^2}}}66m2

Answered by raghvendrark500
0

not Abe to understand the question could you post the snapshot of the question

Similar questions