Factorise- ab^2-(a-c)b-c pleaaseeeeee
Answers
Answer:
❍ \rm \bf{Option (b),}Option(b), \boxed{\tt{\red{6\sqrt{6}\: m^{2}}}}66m2
\:
Gɪᴠᴇɴ :-
\:
\begin{gathered}\begin{gathered} ❍ \:\rm \bf Sides \begin{cases} & \rm{a = {5\:m}} \\ & \rm{b = {6\:m}} \\ & \rm{c = {7\:m}} \end{cases} \\\end{gathered}\end{gathered}❍Sides⎩⎪⎪⎨⎪⎪⎧a=5mb=6mc=7m
Tᴏ Fɪɴᴅ :-
\:
❍ Area of the triangle (∆).
\:
Fᴏʀᴍᴜʟᴀ :-
\:
❍ \boxed{\sf{\green{∆=\sqrt{s(s-a)(s-b)(s-c)}}}}∆=s(s−a)(s−b)(s−c)
Where, \sf \bf {\:s = \dfrac{a+b+c}{2}}s=2a+b+c
\:
Sᴏʟᴜᴛɪᴏɴ :-
\:
➪ \sf{\purple{s = \dfrac{a+b+c}{2}}}s=2a+b+c
\:
➪ \sf{\purple{s = \dfrac{5+6+7}{2}}}s=25+6+7
\:
➪ \sf{\purple{s = \dfrac{18}{2} = 9m}}s=218=9m
\:
\:
➪ \sf{\pink{∆=\sqrt{s(s-a)(s-b)(s-c)}}}∆=s(s−a)(s−b)(s−c)
\:
➪ \sf{\pink{∆=\sqrt{9(9-5)(9-6)(9-7)}}}∆=9(9−5)(9−6)(9−7)
\:
➪ \sf{\pink{∆=\sqrt{9(4)(3)(2)}}}∆=9(4)(3)(2)
\:
➪ \sf{\red{∆=\sqrt{36\times 6}}}∆=36×6
\:
➪ \sf{\pink{∆=}}∆= {\bf{\orange{6\sqrt{6} \:m^2}}}66m2
not Abe to understand the question could you post the snapshot of the question