Math, asked by sinharishabh31305, 1 year ago

Factorise ab^3+bc^3+ca^3+a^2b^2c^2-a^3b^2-b^3c^2-c^3a^2-abc

Answers

Answered by MaheswariS
2

Answer:

a^2b^2c^2+ab^3+bc^3+a^3c-a^2c^3-b^3c^2-a^3b^2-abc=(a^2-b)(b^2-c)(c^2-a)

Step-by-step explanation:

We know that factorization is the reverse process of multiplication.

Using the above, I have found the factors of the given polynomial

Given:

a^2b^2c^2+ab^3+bc^3+ca^3-a^3b^2-b^3c^2-c^3a^2-abc

consider,

(a^2-b)(b^2-c)(c^2-a)

=[a^2b^2-a^2c-b^3+bc](c^2-a)

=a^2b^2c^2-a^2c^3-b^3c^2+bc^3-a^3b^2+a^3c+ab^3-abc

=a^2b^2c^2+ab^3+bc^3+a^3c-a^2c^3-b^3c^2-a^3b^2-abc

\therefore\:a^2b^2c^2+ab^3+bc^3+a^3c-a^2c^3-b^3c^2-a^3b^2-abc=(a^2-b)(b^2-c)(c^2-a)

Answered by mevadarajesh
0

Answer:

see above picture

Step-by-step explanation:

please mark me as branliest answer

Attachments:
Similar questions