Math, asked by devmalik1809, 1 year ago

Factorise and divide (5p2-25p+20)÷ (p-1)

Answers

Answered by nirmalark25
98

Answer:

5(p-4)

Step-by-step explanation:

\frac{ 5p^2 - 25p + 20}{p-1}

\frac{5(p^2 - 5p + 4)}{p-1}

\frac{5(p^2 -p -4p+4)}{p-1}

\frac{5(p(p-1)-4(p-1)}{p-1}

\frac{5(p-1)(p-4)}{p-1}

\frac{5(p-4)}{1}

5(p-4)

Answered by Swarup1998
45

(5p² - 25p + 20)/(p - 1) = 5 (p - 4)

Step-by-step explanation:

We have to simplify (5p² - 25p + 20) ÷ (p - 1)

At first, let us factorize the numerator.

∴ 5p² - 25p + 20

= 5 (p² - 5p + 4)

= 5 (p² - 4p - p + 4)

= 5 {p (p - 4) - 1 (p - 4)}

= 5 (p - 4) (p - 1)

Now we find the simplified form.

∴ (5p² - 25p + 20) ÷ (p - 1)

= 5 (p - 4) (p - 1) ÷ (p - 1)

= 5 (p - 4)

(5p² - 25p + 20) ÷ (p - 1) = 5 (p - 4)

Similar questions