Math, asked by shubhdeepsingh747, 2 months ago

factorise and find zeroes of 2x³+7x²-3x-18​

Answers

Answered by Anonymous
4

Answer:

2x^3+7x^2-3x-18=(x+2)(x+3)(x-\frac{3}{2})

Step-by-step explanation:

Given : Expression 2x^3+7x^2-3x-18

To find : Factorise the expression?

Solution :

Expression 2x^3+7x^2-3x-182

Applying  \: rational  \: root \:  \\  theorem,  \: which \:  state  \: that \\  possible  \: roots \:  are \:  in \:  form \pm\frac{p}{q}

where p is the factor of coefficient of higher degree and q is the factor of constant.

Possible  \: roots  \: are \:  \pm(1,\frac{1}{2},\frac{1}{3},2,\frac{2}{3})

Substitute x=1 in equation,

2x^3+7x^2-3x-18=2+7-3-18=-122

So, x=1 is not a root.

Put x=-2,

2x^3+7x^2-3x-18=2\times (-8)+7\times 4-3\times (-2)-18=0

So, x=-2 is one of the root.

Put x=-3

2x^3+7x^2-3x-18=2\times (-27)+7\times 9-3\times (-3)-18=0

So, x=-3 is one of the root.

Put  \: x=\frac{3}{2}

2x^3+7x^2-3x-18=2\times (\frac{27}{8})+7\times (\frac{9}{4})-3\times (\frac{3}{2})-18=0

So, \:  x=\frac{3}{2} \: is  \: one \:  of  \: the \:  root.

Therefore,  \: The  \: factors \:  of \:  \\  given \:  expression \:  is \:  \\  (x+2)(x+3)(x-\frac{3}{2})

Similar questions