Math, asked by rsd742679, 11 months ago

Factorise (b+c)^3*(b-c)^ 3+(c-a)^3*(c+a)^3+(a-b)^3(a+b)^3
Please don't spam
Wrong answer will be reported and deleted
It is urgent
I will mark you as brainliest ​

Answers

Answered by navyasri231
0

Step-by-step explanation:

a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3 = [a(b-c)]^3 + [b(c-a)]^3 + [c(a-b)]^3

We know, a^3 + b^3 + c^3 =3abc if a+b+c =0

Here, a =[a(b-c)] , b = [b(c-a)] & c =[c(a-b)]

⇒a+b+c =  [a(b-c)] + [b(c-a)] + [c(a-b)]

             = ab - ac + bc - ab + ac - bc = 0

Therefore, a^3 + b^3 + c^3 = 3abc

⇒[a(b-c)]^3 + [b(c-a)]^3 + [c(a-b)]^3 = 3 [a(b-c)] [b(c-a)] [c(a-b)]

                                                     = 3abc* (b-c)* (c-a)* (a-b)

Similar questions