Factorise (b+c)^3*(b-c)^ 3+(c-a)^3*(c+a)^3+(a-b)^3(a+b)^3
Please don't spam
Wrong answer will be reported and deleted
It is urgent
I will mark you as brainliest
Answers
Answered by
0
Step-by-step explanation:
a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3 = [a(b-c)]^3 + [b(c-a)]^3 + [c(a-b)]^3
We know, a^3 + b^3 + c^3 =3abc if a+b+c =0
Here, a =[a(b-c)] , b = [b(c-a)] & c =[c(a-b)]
⇒a+b+c = [a(b-c)] + [b(c-a)] + [c(a-b)]
= ab - ac + bc - ab + ac - bc = 0
Therefore, a^3 + b^3 + c^3 = 3abc
⇒[a(b-c)]^3 + [b(c-a)]^3 + [c(a-b)]^3 = 3 [a(b-c)] [b(c-a)] [c(a-b)]
= 3abc* (b-c)* (c-a)* (a-b)
Similar questions