Math, asked by bkashyap95p46smm, 11 months ago

Factorise :


-Brainly​

Attachments:

Answers

Answered by sahil17292592004
0

Answer:          = (3x+2y+1z)[9x^2+4y^2+z^2-6xy-2yz-3zx]

                               

Step-by-step explanation:

Since we know that

a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)

so, rewriting  THIS:

27x^3 + 8y^3 + z^3 - 3abc

In this type:

a^3 + b^3 + c^3 - 3abc \\

As follows:

3x^3 + 2y^3 + 1z^3 - 3(3x)(2y) (1z)

Now, using this identity:

a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)

=3x^3 + 2y^3 + 1z^3 - 3(3x)(2y) (1z)\\= (3x+2y+1z)[(3x)^2+(2y)^2+(z)^2-(3x)(2y)-(2y)(1z)-(1z)(3x)]\\

= (3x+2y+1z)[9x^2+4y^2+z^2-6xy-2yz-3zx]

Learning\;\; together\;:)

Answered by dassoumyadeep2004
1

Answer:

(3x+2y+z) (9x2+4y2+z2-6xy-2yz-3zx)

Step-by-step explanation:

27x3+8y3+z3-18xyz

it is in the form

a3+b3+c3-3abc= (a+b+c) (a2+b2+c2-ab-bc-ca)

we can write it as

(3x)3+(2y)3+z3-3*2*3* xyz

=>(3x+2y+z) (9x2+4y2+z2-6xy-2yz-3zx)

Similar questions