Math, asked by manojchinthapalli, 6 months ago

Factorise: c²-12c+20.​

Answers

Answered by Vibhutomer
2

Answer:

c = 2,10

Step-by-step explanation:

c^2 - (10+2)c + 20

c^2 - 10c - 2c + 20

c(c-10) - 2(c-10)

(c-2) (c-10)

c = 2,10

Answered by SoniaRanjan
5

STEP1:\\Trying  \:  to \:  factor\\ \:  by  \: splitting  \: the \: \\ middle \:  term</p><p>\\</p><p> 1.1     Factoring  \:  c2-12c+20 \\</p><p></p><p>The \:  first term \:  is, \\  \: c2  its \:  coefficient is   \: 1 .\\</p><p> \: The \:  middle  \: term \: \\ is,  \:  -12c   \: its \:  coefficient  \: is  -12 .\\</p><p>The \:  last  \: \\term, "the constant", is  +20 </p><p></p><p>Step-1 \:  : Multiply  \: the \:  coefficient \: \\ of \:  the \:  first  \: term \:  by \:  the \:  \\constant  \:   1 • 20 = 20 </p><p></p><p>Step-2 : Find two factors of  20  whose sum \\equals the coefficient of the middle term, which is   -12 . \\ </p><p></p><p>     -20   +   -1   =   -21     -10 \\    +   -2   =   -12   That's it \\ </p><p></p><p></p><p>Step-3 : Rewrite the \\  polynomial splitting the \\  middle term using the two \\  factors found in \\  step 2 above,  -10  and  -2  \\ </p><p>                     c2 - 10c - 2c - 20</p><p> \\ </p><p>Step-4 : Add up the first 2 terms, pulling out like factors : \\ </p><p>                    c • (c-10)</p><p>              Add \:up\: the last 2 terms, pulling out common factors : \\ </p><p>                    2 • (c-10) \\ </p><p>Step-5 : Add up the four terms of step 4 : \\ </p><p>                    (c-2)  •  (c-10) \\ </p><p>             Which is the desired factorization</p><p> \\ </p><p>Final result : \\ </p><p></p><p>(c - 2) • (c - 10)</p><p></p><p>

Scroll here➡️➡️➡️➡️➡️➡️➡️

Similar questions