factorise completely
Attachments:
Answers
Answered by
0
(2)-2×2×8x² +(8x)²=
4-32x²+64x²
(ax)²-2×ax×ay+(ay)²=
a²x²-a²xy+a²y²
4-32x²+64x²
(ax)²-2×ax×ay+(ay)²=
a²x²-a²xy+a²y²
Answered by
0
1) 2 - 8x²
=> taking 2 common from both terms
=> 2 ( 1 - 4x² )
=> 2 ( 1² - (2x)² )
using a²-b² = (a+b)(a-b)
=>2 ( 1 + 2x ) ( 1 - 2x )
#################
2) ax²-ay²
=> a ( x² - y² )
=> a ( x + y ) ( x - y )
as , a²-b²= ( a + b ) ( a - b )
#################
3) a⁴-b⁴
=> ( a² ) ² - ( b² ) ²
=> ( a² - b² ) ( a² + b² )
=> ( a - b ) ( a + b ) ( a² + b² )
using formula a²-b²= (a+b)(a-b)
hope this helps
=> taking 2 common from both terms
=> 2 ( 1 - 4x² )
=> 2 ( 1² - (2x)² )
using a²-b² = (a+b)(a-b)
=>2 ( 1 + 2x ) ( 1 - 2x )
#################
2) ax²-ay²
=> a ( x² - y² )
=> a ( x + y ) ( x - y )
as , a²-b²= ( a + b ) ( a - b )
#################
3) a⁴-b⁴
=> ( a² ) ² - ( b² ) ²
=> ( a² - b² ) ( a² + b² )
=> ( a - b ) ( a + b ) ( a² + b² )
using formula a²-b²= (a+b)(a-b)
hope this helps
Similar questions