Math, asked by Anupamkumar4553, 9 months ago

factorise each of the following algebraic expression.
please help me
I will give 14 thanks plus follow​

Attachments:

Answers

Answered by anindyaadhikari13
3

Answer:

See this.

Step-by-step explanation:

<marquee>Hope it helps you...Please mark this answer as the brainliest and follow me.</marquee>

Attachments:
Answered by Rohith200422
3

Question:

1. \:  6 {x}^{2} - 5xy - 6 {y}^{2}

2. \: 1 - 2ab - ( {a}^{2}  +  {b}^{2} )

3. \: {(x + 2)}^{2}  - 6(x + 2) + 9

4. \:  {4x}^{4}  + 1

Answer:

1. \: (2x - 3y)(3x + 2y)

2. \: \big[{a}^{2}  + 6ab +  {b}^{2}\big]  - 1

3. {x}^{2}  +  {y}^{2}   +  2x\big[2y - 3x\big] - 3

4. \: The \: answer  \: is \: reconsisting.

Step-by-step explanation:

 \bold{1. \:  6 {x}^{2} - 5xy - 6 {y}^{2}  }

Product :- -36 = -9 × 4

Sum :- -5 = -9 + 4

\implies 6 {x}^{2}  - 9xy + 4xy - 6 {y}^{2}

\implies 3x(2x  - 3y) + 2y(2x - 3y)

\implies  \boxed{(2x - 3y)(3x + 2y)}

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

\bold{2. \: 1 - 2ab - ( {a}^{2}  +  {b}^{2} )}

\implies 1 - 2ab -  {(a + b)}^{2}  - 2ab

\implies 1 - 4ab -  {(a + b)}^{2}

\implies  {(a + b)}^{2}  + 4ab - 1

\implies   {a}^{2}  + 2ab +  {b}^{2}  + 4ab - 1

\implies   \boxed{\big[{a}^{2}  + 6ab +  {b}^{2}\big]  - 1}

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

 \bold{3. \: {(x + 2)}^{2}  - 6(x + 2) + 9}

\implies ( {x}^{2}  + 4xy +  {y}^{2} ) - 6x - 12 + 9

\implies  {x}^{2}  + 4xy +  {y}^{2}  - 6x  - 3

\implies  {x}^{2}  +  {y}^{2}   +  4xy - 6x - 3

 \implies \boxed{ {x}^{2}  +  {y}^{2}   +  2x\big[2y - 3x\big] - 3}

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

 \bf{4. \:  {4x}^{4}  + 1}

 \implies  {(2 {x}^{2} )}^{2}  +  {(1)}^{2}

\implies  {(2 {x}^{2}  + 1)}^{2}   - 2(2 {x}^{2} )(1)

\implies  {(2 {x}^{2} )}^{2}  +2(2 {x}^{2} )(1) +  {(1)}^{2}   - 4 {x}^{2}

\implies  {4x}^{4}  + 4 {x}^{2}  + 1 - 4 {x}^{2}

\implies  \boxed{ {4x}^{4} + 1 }

This answer is reconsisting.

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Similar questions