Math, asked by amoscharan5437, 1 year ago

Factorise each of the given : 27-125a³-135a+225a²

Answers

Answered by iHelper
72
Hello!

\star\: \bf\small{IDENTITY\: USED} :
\sf (a-b)^{3} = a^{3}-3a^{2}b+3ab^{2}-b^{3}

\star\: \bf\small{ANSWER} :

\sf 27 - 125a^{3}- 135a + 225a^{2} \\ \\ \implies \sf (3)^{3}-(5a)^{3}- 3\times(3)^{2}\times5a + 3\times3\times(5a)^{2} \\ \\ \implies \boxed{\red{\bf{(3-5a)^{3}}}}

Cheers!

chetanchaudhary196: (3)cube3 -(5a)cube3 -3×5a×3(3-5a) =( 3 - 5a)cube3
Answered by sk98764189
26

Answer:

(3\ -\ 5a)(3\ -\ 5a)(3\ -\ 5a)

Step-by-step explanation:

According to the question

The given expression is :

27\ -\ 125a^{3}\ -\ 135a\ +\ 225a^{2}

Now, we have to factorize the above expression

27\ -\ 125a^{3}\ -\ 135a\ +\ 225a^{2}

It can be written as

= (3)^{3}\ -\ (5a)^{3}\ -\ 3(3)^{2}(5a)\ +\ 3(3)(5a)^{2}

= (3\ -\ 5a)^{3} (Using the formula (a\ -\ b)^{3} = a^{3}\ -\ b^{3}\ -\ 3a^{2}b\ +\ 3ab^{2})

= (3\ -\ 5a)(3\ -\ 5a)(3\ -\ 5a)  (Answer)

Similar questions