Factorise (i) 1 + x + xy + x^2y
(ii) x^2 + xy + xz + yz
(iii) a(a+b) + 8a + 8b
(iv)a^2 + bc + ac + ab
(v)a^2 + 2a + ab + 2b
Answers
Answered by
0
\left[x _{1}\right] = \left[ \frac{\frac{-1}{2}+\frac{ - y}{2}+\frac{ - \sqrt{\left( 1 - 2\,y+y^{2}\right) }}{2}}{y}\right][x1]=⎣⎡y2−1+2−y+2−√(1−2y+y2)⎦⎤ totally answer
Answered by
2
I don't know the first one.
(ii) x²+xy+xz+yz
= x(x+y)+z(x+y)
=(x+y)(x+z)
(iii) a(a+b)+8a+8b
=a(a+b)+8(a+b)
=(a+b)(a+8)
(iv) a²+bc+ac+ab
=a²+ac+ab+bc
=a(a+c)+b(a+c)
=(a+c)(a+b)
(v) a²+2a+ab+2b
=a(a+2)+b(a+2)
=(a+2)(a+b)
(ii) x²+xy+xz+yz
= x(x+y)+z(x+y)
=(x+y)(x+z)
(iii) a(a+b)+8a+8b
=a(a+b)+8(a+b)
=(a+b)(a+8)
(iv) a²+bc+ac+ab
=a²+ac+ab+bc
=a(a+c)+b(a+c)
=(a+c)(a+b)
(v) a²+2a+ab+2b
=a(a+2)+b(a+2)
=(a+2)(a+b)
Answered by
1
I don't know the first one.
(ii) x²+xy+xz+yz
= x(x+y)+z(x+y)
=(x+y)(x+z)
(iii) a(a+b)+8a+8b
=a(a+b)+8(a+b)
=(a+b)(a+8)
(iv) a²+bc+ac+ab
=a²+ac+ab+bc
=a(a+c)+b(a+c)
=(a+c)(a+b)
(v) a²+2a+ab+2b
=a(a+2)+b(a+2)
=(a+2)(a+b)
(ii) x²+xy+xz+yz
= x(x+y)+z(x+y)
=(x+y)(x+z)
(iii) a(a+b)+8a+8b
=a(a+b)+8(a+b)
=(a+b)(a+8)
(iv) a²+bc+ac+ab
=a²+ac+ab+bc
=a(a+c)+b(a+c)
=(a+c)(a+b)
(v) a²+2a+ab+2b
=a(a+2)+b(a+2)
=(a+2)(a+b)
Similar questions