Factorise (i) a^4 − b^4 (ii) p^4 − 81 (iii) x^4 − (y + z)^4 (iv) x^4 − (x − z)^4 (v) a^4 − 2a^2b^2 + b^4
Answers
Answer with Step-by-step explanation:
(i) a⁴ − b⁴
= (a²)² − (b²)²
= (a² − b²) (a² + b²)
By using the formula [(a² − b²) = (a − b) (a + b)]
= (a − b) (a + b) (a² + b²)
(ii) p⁴ − 81
= (p²)² - (9)²
= (p² − 9) (p² + 9)
By using the formula [(a² − b²) = (a − b) (a + b)]
= [(p)² − (3)²] (p² + 9)
= (p − 3) (p + 3) (p² + 9)
(iii)x⁴ − (y + z)⁴
= (x²)² − [(y +z)²]²
= [x² − (y + z)²] [x² + (y + z)²]
By using the formula [(a² − b²) = (a − b) (a + b)]
= [x − (y + z)][ x + (y + z)] [x² + (y + z)²]
= (x − y − z) (x + y + z) [x² + (y + z)²]
(iv)x⁴ − (x − z)⁴
= (x²)² − [(x − z)²]²
= [x² − (x − z)²] [x² + (x − z)²]
By using the formula [(a² − b²) = (a − b) (a + b)]
= [x − (x − z)] [x + (x − z)] [x² + (x − z)²]
= z(2x − z) [x² + x² − 2xz + z²]
= z(2x − z) (2x² − 2xz + z²)
(v)a⁴ − 2a²b² + b⁴
= (a²)² − 2 (a²) (b²) + (b²)²
= (a²− b²)²
= [(a − b) (a + b)]²
[(a² − b²) = (a − b) (a + b)]
= (a − b)² (a + b)²
HOPE THIS ANSWER WILL HELP YOU....
Some more questions of this chapter :
Factorise the expressions (i) ax^2 + bx (ii) 7p^2 + 21q^2 (iii) 2x^3 + 2xy^2 + 2xz^2 (iv) am^2 + bm^2 + bn^2 + an^2 (v) (lm + l) + m + 1 (vi) y(y + z) + 9(y + z) (vii) 5y^2 − 20y − 8z + 2yz (viii) 10ab + 4a + 5b + 2 (ix) 6xy − 4y + 6 − 9x
https://brainly.in/question/1449029
Factorise the following expressions (i) p^2 + 6p + 8 (ii) q^2 − 10q + 21 (iii) p^2 + 6p − 16
https://brainly.in/question/1449027