Math, asked by lalchhanchhuahi3477, 1 year ago

Factorise (i) a^4 − b^4 (ii) p^4 − 81 (iii) x^4 − (y + z)^4 (iv) x^4 − (x − z)^4 (v) a^4 − 2a^2b^2 + b^4

Answers

Answered by hukam0685
10
Solution:

1)  {a}^{4}  -  {b}^{4}  \\  \\  =  > ( { {a}^{2} })^{2}  -  { {(b}^{2} })^{2} \\  \\ =  >  ( {a}^{2}   +  {b}^{2} )( {a}^{2}  -  {b}^{2} ) \\  \\  =  >  {a}^{4}  -  {b}^{4} = ( {a}^{2}   +  {b}^{2} )(a + b)(a - b) \\  \\ formula \: used \:  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\  \\
2) \:  {p}^{4}  - 81 \\  \\  =  > {p}^{4} -  {3}^{4}  \\  \\  =  >  { {(p}^{2} )}^{2}  - { {(3}^{2} )}^{2}  \\  \\  =  >  ({p}^{2}  -  {3}^{2} )({p}^{2}   +   {3}^{2} ) \\  \\  =  > ({p}^{2}   +   {3}^{2} )(p + 3)(p - 3) \\  \\ {p}^{4}  - 81 = ( {p}^{2}  + 9)(p + 3)(p - 3) \\  \\
3)   {x}^{4}  -  {(y + z)}^{4} \\  \\   =  > ({ {x}^{2} })^{2}  - ( { {(y + z)}^{2} })^{2}  \\  \\  =  > ( {x}^{2}  + ( {y + z)}^{2} )( {x}^{2}   -  ( {y + z)}^{2} )) \\  \\  =  > ( {x}^{2}  + ( {y + z)}^{2} )(x - y - z)(x + y + z) \\  \\
3)   {x}^{4}  -  {(x -  z)}^{4} \\  \\   =  > ({ {x}^{2} })^{2}  - ( { {(x -  z)}^{2} })^{2}  \\  \\  =  > ( {x}^{2}  + ( {x -  z)}^{2} )( {x}^{2}   -  ( {x -  z)}^{2} )) \\  \\  =  > ( {x}^{2}  + ( {x -  z)}^{2} )(x - x + z)(x  + x -  z) \\  \\  =  >  ( {x}^{2}  +  {x}^{2}  +  {z}^{2}  - 2xz)(z)(2x - z) \\  \\  {x}^{4}  -  {(x -  z)}^{4}=  > z(2x - z)(2 {x}^{2}  +  {z}^{2}  - 2xz) \\  \\
5) \:  \:  {a}^{4}  - 2 {a}^{2}  {b}^{2} +  {b}^{4}   \\  \\  =  {a}^{4}  - {a}^{2}  {b}^{2} - {a}^{2}  {b}^{2} +  {b}^{4}  \\  \\  =  >  {a}^{2} ( {a}^{2}  -  {b}^{2} ) -  {b}^{2} ( {a}^{2}  -  {b}^{2} ) \\  \\  =  > ( {a}^{2}  -  {b}^{2} )( {a}^{2}  -  {b}^{2} ) \\  \\  =  > (a + b)(a - b)(a + b)(a - b) \\  \\  =  {(a + b)}^{2} ( {a - b})^{2}  \\  \\
Answered by nikitasingh79
6

Answer with Step-by-step explanation:

(i) a⁴ − b⁴  

= (a²)² − (b²)²

= (a² − b²) (a² + b²)

By using the formula [(a² − b²) = (a − b) (a + b)]

= (a − b) (a + b) (a² + b²)

 

(ii) p⁴ − 81

= (p²)² -  (9)²

= (p² − 9) (p² + 9)

By using the formula [(a² − b²) = (a − b) (a + b)]

= [(p)² − (3)²] (p² + 9)

= (p − 3) (p + 3) (p² + 9)

 

(iii)x⁴ − (y + z)⁴  

= (x²)² − [(y +z)²]²

= [x² − (y + z)²] [x² + (y + z)²]

By using the formula [(a² − b²) = (a − b) (a + b)]

= [x − (y + z)][ x + (y + z)] [x² + (y + z)²]

= (x − y − z) (x + y + z) [x² + (y + z)²]

 

(iv)x⁴ − (x − z)⁴  

= (x²)² − [(x − z)²]²

= [x² − (x − z)²] [x² + (x − z)²]

By using the formula [(a² − b²) = (a − b) (a + b)]

= [x − (x − z)] [x + (x − z)] [x² + (x − z)²]

= z(2x − z) [x² + x² − 2xz + z²]

= z(2x − z) (2x² − 2xz + z²)

 

(v)a⁴ − 2a²b² + b⁴

= (a²)² − 2 (a²) (b²) + (b²)²

= (a²− b²)²

= [(a − b) (a + b)]²

[(a² − b²) = (a − b) (a + b)]

= (a − b)² (a + b)²

HOPE THIS ANSWER WILL HELP YOU....

Some more questions of this chapter :

Factorise the expressions (i) ax^2 + bx (ii) 7p^2 + 21q^2 (iii) 2x^3 + 2xy^2 + 2xz^2 (iv) am^2 + bm^2 + bn^2 + an^2 (v) (lm + l) + m + 1 (vi) y(y + z) + 9(y + z) (vii) 5y^2 − 20y − 8z + 2yz (viii) 10ab + 4a + 5b + 2 (ix) 6xy − 4y + 6 − 9x

https://brainly.in/question/1449029

Factorise the following expressions (i) p^2 + 6p + 8 (ii) q^2 − 10q + 21 (iii) p^2 + 6p − 16

https://brainly.in/question/1449027

Similar questions