Math, asked by ruchika1292, 1 month ago

Factorise :-
i)x² + xy + 8 x + 8y
ii) p²- 10 p +25
iii) 63 a² - 112b²
iv) p²+6p - 16
v) 27 x³ + 64y³ - 125z³ + 180 xyz
Please help i will mark him or her as brainleast answer please..its my promise as soon as possible..

Answers

Answered by FleurxExotica
107

Given :-

It is given to factorise the given expression;

  • x² + xy + 8x + 8y
  • p² - 10p + 25
  • 63a² - 112b²
  • p² + 6p - 16
  • 27x³ + 64y³ - 125z³ + 180xyz

Solution :-

Here's the factorization for the given expressions;

  • + xy + 8x + 8y

⇒ x² + xy + 8x + 8y

⇒ x(x + y) + 8(x + y)

(x + y)(x + 8)

  • p² - 10p + 25

⇒ p² - 10p + 25

⇒ p(p - 5) - 5(p - 5)

⇒ (p - 5)(p - 5)

(p - 5)²

  • 63a² - 112b²

⇒ 63a² - 112b²

⇒ 7(9a² - 16b²)

⇒ (3a - 4b)(3a + 4b)

7(3a - 4b)(3a + 4b)

  • p² + 6p - 16

⇒ p² + 6p - 16

⇒ (p² - 2p) + (8p - 16)

⇒ p(p - 2) + 8(p - 2)

(p - 2)(p + 8)

  • 27x³ + 64y³ - 125z³ + 180xyz

⇒ 27x³ + 64y³ - 125z³ + 180xyz

⇒ 27x³ + 180yzx + 64y³ - 125z³

(3x + 4y - 5z)(9x² - 12xy + 15xz + 16y² + 20yz + 25z²)

Thanks!!! :D

Answered by GraceS
17

\sf\huge\bold{Answer:}

Given :

i)x² + xy + 8 x + 8y

ii) p²- 10 p +25

iii) 63 a² - 112b²

iv) p²+6p - 16

v) 27 x³ + 64y³ - 125z³ + 180 xyz

To find :

Factors of each part.

Solution :

\fbox{part i) }

 ⇒ \: x² + xy + 8 x + 8y \\ ⟶x(x + y) + 8(x + y) \\ ⟶(x + y)(x + 8)

\fbox{part ii) }

⇒p²- 10 p +25 \\ ⟶ {p}^{2}  - 5p - 5p + 25(splitting \: middle \:  term)\\ ⟶( {p}^{2} - 5p) + ( - 5p + 25)  \\ ⟶p(p - 5) - 5(p - 5) \\ ⟶( p- 5)( p- 5) \\ or \: ⟶{(p - 5)}^{2}

\fbox{part iii) }

⇒ 63 a² - 112b² \\ ⟶7(9 {a}^{2} - 16 {b}^{2}) \\   ⟶7( {(3a)}^{2} -  {(4b)}^{2})

Using identity a² - = (a-b)(a+b)

⟶7(3a - 4b)(3a + 4b)

\fbox{part iv) }

⇒p²+6p - 16 \\ ⟶ {p}^{2} + 8p - 2p - 16(splitting \: middle \: term) \\  ⟶( {p}^{2} + 8p) + ( - 2p - 16)\\ ⟶p(p + 8) - 2(p + 8) \\ ⟶( p+ 8)(p - 2)

\fbox{part v) }

⇒27 x³ + 64y³ - 125z³ + 180 xyz \\ ⟶27 x³ + 64y³ - 125z³ -180xyz\\⟶(3x+4y-5z)(9x²-12xy+15xz+16y²+20yz+25z²\\

Similar questions