Math, asked by adalixyz, 1 year ago

factorise it be fast please

Attachments:

Answers

Answered by madhura41
5
Hello Friends ✌
Here is u r Ans ➡


 =  \frac{2x {}^{2}  - x - 3}{3x {}^{2}  + 5x + 2}

 =  \frac{2x {}^{2} + 2x - 3x - 3 }{3x {}^{2}  + 3x + 2x + 2}

 =  \frac{2x \times (x + 1) - 3x - 3}{3x {}^{2} + 3x + 2x + 2 }

 =  \frac{2x \times (x + 1) - 3(x + 1)}{3x \times (x + 1) + 2(x + 1)}

 =  \frac{(x + 1) \times (2x - 3)}{(x + 1) \times (3x + 2)}

 =  \frac{2x - 3}{3x + 2}

✨b) ➡
 = 16p {}^{2}  +  \frac{8}{3} pq +  \frac{1}{9} q {}^{2}


 = using \:  >  \: a {}^{2}  + 2ab + b {}^{2}  = (a + b) {}^{2}

 = (4p +  \frac{1}{3} q) {}^{2}


✨c) ➡
 = 121t {}^{2}  - 0.04

 = 121t {}^{2}  -  \frac{1}{25}

 = using \:  >  \: a {}^{2}  - b {}^{2}  = (a - b)(a + b)

 = (11t -  \frac{1}{5} ) \times (11t +  \frac{1}{5} )
☄☄☄☄☄☄☄☄☄☄☄☄☄☄
Hope This Helps u ☺.
Answered by siddhartharao77
4

(a)

Given Equation is (2x^2 - x - 3)/(3x^2 + 5x + 2)

⇒ (2x^2 - 3x + 2x - 3)/(3x^2 + 3x + 2x + 2)

⇒ x(2x - 3) + 1(2x - 3)/3x(x + 1) + 2(x + 1)

⇒ (x + 1)(2x - 3)/(3x + 2)(x + 1).

⇒ (2x - 3)/(3x + 2)


(b)

Given Equation is 16p^2 + (8/3) pq + (1/9)q^2

⇒ (1/9) [144p^2 + (72/3) pq + q^2]

⇒ (1/9)[(12p)^2 + 24 pq + q^2]

⇒ (1/9)[12p + q]^2.

(or)

⇒ (4p)^2 + 2(4)(1/3) + (1/3q)^2

⇒ (4p + 1/3q)^2


(c)

Given Equation is 121t^2 - 0.04

⇒ (11t)^2 - (0.2)^2.

We know that a^2 - b^2 = (a + b)(a - b)

⇒ (11t + 0.2)(11t - 0.2).


Hope it helps!



adalixyz: answer my other questions too please please please please please
Similar questions