Factorise (k) question plzzz.
Mark u as BRAINLIEST
Attachments:
Answers
Answered by
2
6x² - 5xy - 4y² + x + 17y - 15
→ 6x² - 5xy + x - ( 4y² - 17y + 15 )
→ 6x² + x( -5y + 1 ) - ( 4y² - 17y + 15 )
→ 6x² + x(1-5y) - [ 4y² - (12+5)y - 15 ]
→ 6x² + x(1-5y) - [ 4y² - 12y - 5y -15 ]
→ 6x² + x(1-5y) - [ 4y(y-3) - 5(y-3) ]
→ 6x² + x(1-5y) - (y-3)(4y-5)
Now splitting middle term x(1-5y)
→ 6x² + 3x(y-3) - 2x(4y-5) - (y-3)(4y-5)
→ 3x { 2x+ (y-3) } - (4y-5) { 2x + (y-3) }
→ 3x ( 2x + y - 3 ) - (4y-5) ( 2x + y - 3 )
→ ( 2x + y - 3 ) { 3x - (4y-5) }
→ ( 2x + y - 3 ) ( 3x - 4y +5 )
→ 6x² - 5xy + x - ( 4y² - 17y + 15 )
→ 6x² + x( -5y + 1 ) - ( 4y² - 17y + 15 )
→ 6x² + x(1-5y) - [ 4y² - (12+5)y - 15 ]
→ 6x² + x(1-5y) - [ 4y² - 12y - 5y -15 ]
→ 6x² + x(1-5y) - [ 4y(y-3) - 5(y-3) ]
→ 6x² + x(1-5y) - (y-3)(4y-5)
Now splitting middle term x(1-5y)
→ 6x² + 3x(y-3) - 2x(4y-5) - (y-3)(4y-5)
→ 3x { 2x+ (y-3) } - (4y-5) { 2x + (y-3) }
→ 3x ( 2x + y - 3 ) - (4y-5) ( 2x + y - 3 )
→ ( 2x + y - 3 ) { 3x - (4y-5) }
→ ( 2x + y - 3 ) ( 3x - 4y +5 )
Similar questions