Math, asked by yadavpinky112, 9 months ago

Factorise of (x-y)^2 - z^2 *​

Answers

Answered by Anonymous
0

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Factorised \ form \ of \ (x-y)^{2}-z^{2}}

\sf{is \ (x-y+z)(x-y-z)}

\sf\orange{Given:}

\sf{\implies{(x-y)^{2}-z^{2}}}

\sf\green{\underline{\underline{Solution:}}}

\sf{\implies{(x-y)^{2}-z^{2}}}

\sf{By \ identity}

\sf{a^{2}-b^{2}=(a+b)(a-b)}

\sf{\implies{(x-y+z)(x-y-z)}}

\sf\purple{\tt{\therefore{Factorised \ form \ of \ (x-y)^{2}-z^{2}}}}

\sf\purple{\tt{is \ (x-y+z)(x-y-z)}}

Answered by upadrastaditya
0

Answer:

using the identity a²-b²=(a+b)(a-b)

given:(x-y)²-z²

solution:(x-y+z)(x-y-z)

the final answer:(x-y+z)(x-y-z)

Similar questions