Math, asked by rishanthkanagavalli, 4 months ago

FACTORISE:
P^2+ 4p + 3

Answers

Answered by Anonymous
4

★ Concept:-

Here this is a question about factorisation. Factorisation actually means finding of roots or making the given equation into its factors.

We have 2 methods for factorisation:

\sf\bullet First \longrightarrow Middle\: term\: splitting.

\sf \bullet Second\longrightarrow Quadratic\: formula.

So let's solve it by both methods.

_____________________

\huge\underline{\boxed{\sf{METHOD\;$1$}}}\bigstar

 

★ Middle term splitting:

:\longrightarrow  P²+4P+3=0

:\longrightarrow  P²+3P+P+3=0

:\longrightarrow  P(P+3)+1(P+3)=0

:\longrightarrow (P+1)(P+3)=0

:\longrightarrow  P=-1,-3

∵ Roots are -1 and -3.

_____________________

\huge\underline{\boxed{\sf{METHOD\;$2$}}}\bigstar

★ Quadratic  

In the given equation we have:-

:\longrightarrow Coefficient of P², a=1

:\longrightarrow Coefficient of P, b=4

:\longrightarrow Constant term , c=3

_____________________

~Now apply formula:-

\large\underline{\boxed{\sf X=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}}}\bigstar

Now putting the values:

\sf: \longrightarrow X=\dfrac{-4\pm\sqrt{4^2-4(1)(3)}}{2(1)}

\sf: \longrightarrow X=\dfrac{-4\pm\sqrt{16-12}}{2}

\sf: \longrightarrow X=\dfrac{-4\pm\sqrt{4}}{2}

\sf: \longrightarrow X=\dfrac{-4\pm2}{2}

_____________________

For positive:-

\sf: \longrightarrow X=\dfrac{-4+2}{2}

\sf: \longrightarrow X=\dfrac{-2}{2}

\sf: \longrightarrow X=\dfrac{-\not 2}{\not 2}

\Large\boxed{\sf{\red{\implies X=-1}}}

_____________________

For negative:-

\sf: \longrightarrow X=\dfrac{-4-2}{2}

\sf: \longrightarrow X=\dfrac{-6}{2}

\sf: \longrightarrow X=\dfrac{-\not 6}{\not 2}

\Large\boxed{ \sf{\pink{ \implies X=-3}}}

∵ The value of roots are -1 and -3.

_____________________

Similar questions