factorise p^3(q - r)^3 + q^3(r - p)^3 + r^3(p - q)^3
Answers
Answer:
Hii
Step-by-step explanation:
3pqr(q - r)(r - p)(p - q)
_______________________________________________
Given :
To factorize :
p³ (q - r)³ + q³ (r - p)³+r³(p - q)³
Solution :
p³ (q - r)³ + q³ (r - p)³+r³(p - q)³
⇒ [p (q - r)]³+[q (r - p)]³+ [r (p - q)]³
__
if,
a = p (q - r) , b = q (r - p) , c = r (p - q)
By adding a , b & c,
We get,
⇒ a + b + c = p (q - r) + q (r - p) + (p - q) = (pq - pr) + (qr - pq) + (pr - qr) = pq - pq + qr - qr + pr - pr = 0
We know that,
If a + b + c = 0,
then,
a³ + b³ + c³ = 3abc (Identity)
So,
By substituting,
a = p (q - r) , b = q (r - p) , c = r (p - q)
We get,
⇒ [p(q - r)]³ + [q(r - q)]³ + [r(p - q)]³ = 3pqr (q - r)(r - p)(p - q)
⇒p³ (q - r)³ + q³ (r - p)³ + r³ (p - q)³ = 3pqr (q - r)(r - p)(p - q)
_______________________________________________
The factorized form of p³ (q - r)³ + q³ (r - p)³ + r³ (p - q)³ is 3pqr (q - r)(r - p)(p - q)
Mark me as brainliest
Answer:
3pqr(p - q)(q - r)(r - p)
Step-by-step explanation:
Given Equation is p³(q - r)³ + q³(r - p)³ + r³(p - q)³
⇒ [p(q - r)]³ + [q(r - p)]³ + [r(p - q)]³
Let a = p(q - r), b = q(r - p), c = r(p - q)
∴ a + b + c = p(q - r) + q(r - p) + r(p - q)
= pq - pr + qr - qp + rp - rq
= 0
We know that when a + b + c = 0, then a³ + b³ + c³ = 3abc
⇒ 3(pq - qr)(qr - qp)(rp - rq)
⇒ 3pqr(p - q)(q - r)(r - p)
Hope it helps!