Factorise p^3(q-r)^3+q^3(r-p)^3+r^3(p-q)^3
Answers
Answered by
7
Step-by-step explanation:
p3(q-r)3+q3(r-p)3+r3(p-q)3
={p(q-r)}3+{q(r-p)}3+{r(p-q)}3
We know, If a+b+c=0 then,
a3+b3+c3 = 3abc
={pq-pr}+{qr-pq}+{pr-qr}
=pq-pr+qr-pq+pr-qr
=0
So, p3(q-r)3+q3(r-p)3+r3(p-q)3=3{p(q-r)q(r-p)r(p-q)}
=3(pq-pr)(qr-pq)(pr-qr)
please mark me as a brainlist
Answered by
4
Answer:
3pqr(p - q)(q - r)(r - p)
Step-by-step explanation:
p³(q - r)³ + q³(r - p)³ + r³(p - q)³
⇒ [p(q - r)]³ + [q(r - p)]³ + [r(p - q)]³
Let k = p(q - r), l= q(r - p), m = r(p - q)
∴ k+l+m = p(q - r) + q(r - p) + r(p - q)
= pq - pr + qr - qp + rp - rq
= 0
We know that when a + b + c = 0, then a³ + b³ + c³ = 3abc
⇒ 3(pq - qr)(qr - qp)(rp - rq)
⇒ 3pqr(p - q)(q - r)(r - p)
Similar questions