factorise p^6 - 512 q^6
Answers
Answered by
26
here is solution
==> p^6 -512q^6
==>{( p)^3}^2 - {(8q)^3}^2
open with a^2 - b^2 identity
==> { p^3 +(8q)^3} { p^3 -(8q)^3}
==> now open
(a^3 +b^3) & (a^3 - b^3)
==> { (p+8q) ( p^2 +64q^2 - 8pq) } × {( p-8q)( p^2 +64q^2 +8pq)}
Ans ...
==> p^6 -512q^6
==>{( p)^3}^2 - {(8q)^3}^2
open with a^2 - b^2 identity
==> { p^3 +(8q)^3} { p^3 -(8q)^3}
==> now open
(a^3 +b^3) & (a^3 - b^3)
==> { (p+8q) ( p^2 +64q^2 - 8pq) } × {( p-8q)( p^2 +64q^2 +8pq)}
Ans ...
siddhartharao77:
Incomplete answer....
Answered by
16
The answer is explained below.
Hope this helps!
Hope this helps!
Attachments:
Similar questions