factorise (p-q)-6(p-q)-16
Answers
Correct Question :
> (p-q)² - 6(p-q) - 16
Solution :
Let us assume that p + q is equal to some variable , k .
So, this equation reduces to :
> k^2 - 6k - 16
> k^2 - 8k + 2k - 16
> k(k-8) + 2(k-8)
> (k+2)(k-8)
Substituting the original value of k ;
> (p+q+2)(p+q-8)
This is the required answer.
_________________________________________________________
Additional Information :
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )