Math, asked by mahakbindal, 1 year ago

factorise plzzzz................ ...
bx²- ax + b

Answers

Answered by Deepsbhargav
16
=> bx² - ax + b _______[GIVEN]

______________________________

USING FACTORISE FORNULA :-

 = > x = \frac{ - b \binom{ + }{ - } \sqrt{ {b}^{2} - 4ac } }{2a}
HERE

=> a= b, b = -a, c=b

_______________________________

PUT THE VALUE IS FACTORISE FORMULA :-

 = > x = \frac{ - b \binom{ + }{ - } \sqrt{ {b}^{2} - 4ac } }{2a} \\ \\ = > x = \frac{ - ( - a) \binom{ + }{ - } \sqrt{ {( - a)}^{2} - 4 \times b \times b} }{2b} \\ \\ = > x = \frac{a \binom{ + }{ - } \sqrt{ {a}^{2} - 4 {b}^{2} } }{2b} \\ \\ = > x = \frac{a \binom{ + }{ - } \sqrt{ {a}^{2} - {(2b)}^{2} } }{2b} \\ \\ = > x = \frac{a \binom{ + }{ - } \sqrt{(a + 2b)(a - 2b)} }{2b} \\ \\ = > x = \frac{a + \sqrt{(a + 2b)(a - 2b)} }{2b} \\ \\ AND \\ \\ = > x = \frac{a - \sqrt{(a + 2b)(a - 2b)} }{2b}
________________________________

THEN

 = > b {x}^{2} - ax + b = 0 \\ \\ = > (x - \frac{a + \sqrt{(a + 2b)(a - 2b)} }{2b} ).(x - \frac{a + \sqrt{(a + 2b)(a - 2b)} }{2b} ) = 0
_________________________[ANSWER]

====================================

____☆BE \: \: \: \: BRAINLY☆____
Similar questions