factorise plzzzzzzzzzzzzzzzzzzzzzz..
will follow u❤️
Answers
Step-by-step explanation:
Use Difference of Squares: {a}^{2}-{b}^{2}=(a+b)(a-b)a
2
−b
2
=(a+b)(a−b).
\frac{{((p+q)(p-q))}^{3}+{({q}^{2}-{r}^{2})}^{3}+{({r}^{2}-{p}^{2})}^{3}}{{(p-q)}^{3}+{(q-r)}^{3}+{(r-p)}^{3}}
(p−q)
3
+(q−r)
3
+(r−p)
3
((p+q)(p−q))
3
+(q
2
−r
2
)
3
+(r
2
−p
2
)
3
2 Use Difference of Squares: {a}^{2}-{b}^{2}=(a+b)(a-b)a
2
−b
2
=(a+b)(a−b).
\frac{{((p+q)(p-q))}^{3}+{((q+r)(q-r))}^{3}+{({r}^{2}-{p}^{2})}^{3}}{{(p-q)}^{3}+{(q-r)}^{3}+{(r-p)}^{3}}
(p−q)
3
+(q−r)
3
+(r−p)
3
((p+q)(p−q))
3
+((q+r)(q−r))
3
+(r
2
−p
2
)
3
3 Use Difference of Squares: {a}^{2}-{b}^{2}=(a+b)(a-b)a
2
−b
2
=(a+b)(a−b).
\frac{{((p+q)(p-q))}^{3}+{((q+r)(q-r))}^{3}+{((r+p)(r-p))}^{3}}{{(p-q)}^{3}+{(q-r)}^{3}+{(r-p)}^{3}}
(p−q)
3
+(q−r)
3
+(r−p)
3
((p+q)(p−q))
3
+((q+r)(q−r))
3
+((r+p)(r−p))
3
4 Use Multiplication Distributive Property: {(xy)}^{a}={x}^{a}{y}^{a}(xy)
a
=x
a
y
a
.
\frac{{(p+q)}^{3}{(p-q)}^{3}+{((q+r)(q-r))}^{3}+{((r+p)(r-p))}^{3}}{{(p-q)}^{3}+{(q-r)}^{3}+{(r-p)}^{3}}
(p−q)
3
+(q−r)
3
+(r−p)
3
(p+q)
3
(p−q)
3
+((q+r)(q−r))
3
+((r+p)(r−p))
3
5 Use Multiplication Distributive Property: {(xy)}^{a}={x}^{a}{y}^{a}(xy)
a
=x
a
y
a
.
\frac{{(p+q)}^{3}{(p-q)}^{3}+{(q+r)}^{3}{(q-r)}^{3}+{((r+p)(r-p))}^{3}}{{(p-q)}^{3}+{(q-r)}^{3}+{(r-p)}^{3}}
(p−q)
3
+(q−r)
3
+(r−p)
3
(p+q)
3
(p−q)
3
+(q+r)
3
(q−r)
3
+((r+p)(r−p))
3
6 Use Multiplication Distributive Property: {(xy)}^{a}={x}^{a}{y}^{a}(xy)
a
=x
a
y
a
.
\frac{{(p+q)}^{3}{(p-q)}^{3}+{(q+r)}^{3}{(q-r)}^{3}+{(r+p)}^{3}{(r-p)}^{3}}{{(p-q)}^{3}+{(q-r)}^{3}+{(r-p)}^{3}}
(p−q)
3
+(q−r)
3
+(r−p)
3
(p+q)
3
(p−q)
3
+(q+r)
3
(q−r)
3
+(r+p)
3
(r−p)
3
hope it helps
Answer:
IN your question sum of
(p^{2} - q^{2} ) + (q^{2} - r^{2} ) + (r^{2} -p^{2} ) = 0(p2−q2)+(q2−r2)+(r2−p2)=0
Then their sum of cube will be equal to 3 times these no. such as (p^{2} - q^{2} )^3 + (q^{2} - r^{2} )^3 + (r^{2} -p^{2} ) ^3 = 3.(p^{2} - q^{2} ).(q^{2} - r^{2} ).(r^{2} -p^{2} )(p2−q2)3+(q2−r2)3+(r2−p2)3=3.(p2−q2).(q2−r2).(r2−p2)
similarly
(p-q)^3 + (q-r)^3 + (r-p)^3 = 3.(p-q).(q-r).(r-p)(p−q)3+(q−r)3+(r−p)3=3.(p−q).(q−r).(r−p)
Thus
(p^{2} - q^{2} )^3 + (q^{2} - r^{2} )^3 + (r^{2} -p^{2} ) ^3 /(p-q)^3 + (q-r)^3 + (r-p)^3
=> 3.(p^{2} - q^{2} ).(q^{2} - r^{2} ).(r^{2} -p^{2} ) / 3.(p-q).(q-r).(r-p)
=> (p-q)(p+q)(q-r)(q+r)(r-p)(r+p) / (p-q)(q-r)(r-p)
=> (p+q)(q+r)(r+p)