Math, asked by AyushiAbha, 10 months ago

Factorise:
pq²+q(p-1) -1=?​

Answers

Answered by Anonymous
82

Given

Factorise:

pq²+q(p-1) -1

Solution

➟ pq² + q(p - 1) - 1

➟ pq² + qp - q - 1

➟ pq(q + 1) - 1(q + 1)

➟ (q + 1)(pq - 1)

Some Identities

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + b³ + 3ab(a + b)
  • (a - b)³ = a³ - b³ - 3ab(a - b)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • a³ + b³ = (a + b)(a² - ab + b²)

\rule{200}3

Answered by Anonymous
4

Heya!!

_____________________________________

Given,

Factorise,

pq²+q(p-1) -1

Solution:-

➟ pq² + q(p - 1) - 1

➟ pq² + qp - q - 1

➟ pq(q + 1) - 1(q + 1)

➟ (q + 1)(pq - 1)

--------------------------------------

Some Identities:-

\bigstar(a + b)² = a² + b² + 2ab

\bigstar(a - b)² = a² + b² - 2ab

\bigstara² - b² = (a + b)(a - b)

\bigstar(a + b)³ = a³ + b³ + 3ab(a + b)

\bigstar(a - b)³ = a³ - b³ - 3ab(a - b)

\bigstara³ - b³ = (a - b)(a² + ab + b²)

\bigstara³ + b³ = (a + b)(a² - ab + b²)

Types of factorise:-

  • Greatest Common Factor.
  • Grouping.
  • Difference in Two Squares.
  • Sum or Difference in Two Cubes.
  • Trinomials.
  • General Trinomials.
Similar questions