Factorise:
pq²+q(p-1) -1=?
Answers
Answered by
82
Given
Factorise:
pq²+q(p-1) -1
Solution
➟ pq² + q(p - 1) - 1
➟ pq² + qp - q - 1
➟ pq(q + 1) - 1(q + 1)
➟ (q + 1)(pq - 1)
Some Identities
- (a + b)² = a² + b² + 2ab
- (a - b)² = a² + b² - 2ab
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + b³ + 3ab(a + b)
- (a - b)³ = a³ - b³ - 3ab(a - b)
- a³ - b³ = (a - b)(a² + ab + b²)
- a³ + b³ = (a + b)(a² - ab + b²)
Answered by
4
Heya!!
_____________________________________
Given,
Factorise,
pq²+q(p-1) -1
Solution:-
➟ pq² + q(p - 1) - 1
➟ pq² + qp - q - 1
➟ pq(q + 1) - 1(q + 1)
➟ (q + 1)(pq - 1)
--------------------------------------
Some Identities:-
(a + b)² = a² + b² + 2ab
(a - b)² = a² + b² - 2ab
a² - b² = (a + b)(a - b)
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - b³ - 3ab(a - b)
a³ - b³ = (a - b)(a² + ab + b²)
a³ + b³ = (a + b)(a² - ab + b²)
Types of factorise:-
- Greatest Common Factor.
- Grouping.
- Difference in Two Squares.
- Sum or Difference in Two Cubes.
- Trinomials.
- General Trinomials.
Similar questions