Math, asked by michaelgimmy, 8 months ago

Factorise -
100 - 36 {(a + b)}^{2}

CLUE - Use the Algebraic Identities.

❌ Spammers aren't Entertained❌​

Answers

Answered by Vyomsingh
5

\large\mathcal \red  \bigstar{\boxed{\purple{ALGEBRAIC\:IDENTITY\:USED}}}

 {a}^{2}   -  {b}^{2}  = (a + b)(a - b)

______________________________

\large\mathcal\red\bigstar{\underline{\purple{SOLUTION}}}:-

100 - 36 {(a + b)}^{2}

 {10}^{2}  -  {(6(a + b))}^{2}

(10 - 6(a + b))(10 + 6(a + b))

(10 - 6a - 6b)(10 + 6a + 6b)

____________________________

\large\mathcal \red\bigstar{\underline{\pink{ANSWER}}}\red\bigstar

(10 - 6a - 6b)(10 + 6a + 6b)

SOME MORE IDENTITIES TO REMEMBER:-

{(a + b)}^2 = {a}^2 + 2ab + {b}^2\\{(a - b)}^2 = {a}^2 - 2ab + {b}^2\\{ a}^2 - {b}^2 = (a + b)(a - b)\\(x + a)(x + b) = {x}^2 + (a + b) x + ab\\{(a + b + c)}^2 = {a}^2 + {b}^2 + {c}^2 + 2ab + 2bc + 2ca\\{(a + b)}^3 = {a}^3 + {b}^3 + 3ab (a + b)\\{(a - b)}3 = {a}^3 - {b}^3 - 3ab (a - b)\\{a}^3 + {b}^3 + {c}^3-3abc = (a + b + c){a}^2 + {b}^2 + {c}^2 - ab - bc - ca

Answered by Anonymous
7

Factorize :- 100 - 36\:(a + b)^2

SOLUTION :-

ALGEBRAIC IDENTITY USED :-

a^2 - b^2 = (a + b)(a - b)

100 - 36\:(a + b)^2\\\\\Rightarrow (10)^2 - [6(\:a + b)]^2\\\\\Rightarrow [10 + 6\:(a + b)][10 - 6\:(a + b)]\\\\= \bold {[10 + 6a + 6b][10 - 6a - 6b]}

Have a Great Time!

Similar questions