Math, asked by pujasharmajoshi, 11 months ago

Factorise:

(256 {x}^{16}  - 1)
Plzz give correct answer​

Answers

Answered by Anonymous
145

\bold{\underline{\:ANSWER:-}}

\bold{\:Find\:here:-}

  • Factors of \:(256x^{16}\:-\:1)

\bold{\:Explanation :- }

\implies\:(256x^{16}\:-\:1)

\implies\:(16x^8)^2-1^2

We know ,

  • \:(x^2-y^2)\:=\:(x-y)(x+y)

So,

\implies\:(16x^8-1)(16x^8+1)

\implies\:(16x^8+1){(4x^4)^2-1^2}

\implies\:(16x^8+1){(4x^4+1)(4x^4-1)}

\implies\:(16x^8+1)(4x^4+1){(2x^2)^2-1^1 }

\implies\:(16x^8+1)(4x^4+1){(2x^2+1)(2x^2-1)}

\implies\:(16x^8+1)(4x^4+1)(2x^2+1){(\sqrt{2}x)^2-1^2}

\implies\:(16x^8+1)(4x^4+1)(2x^2+1)(\sqrt{2}x+1)(\sqrt{2}x-1)

________________________

Answered by kritipotti
0
Here is the answer.
Attachments:
Similar questions