Math, asked by nehalahmed44931, 8 months ago

Factorise

4 \sqrt{3 {x}^{2} }  + 5x - 2 \sqrt{3}

Answers

Answered by amitkumar44481
1

Correct QuestioN :

Factorise  \tt \:  \:  \:  \:  \: 4 \sqrt{3}  {x}^{2}  + 5x - 2 \sqrt{3} .

SolutioN :

We have, Expression.

By Splitting the Middle Terms.

→ 4√3x² + 5x - 2√3.

→ 4√3x² + 8x - 3x - 2√3.

→ 4x(√3x + 2 ) - √3( √3x + 2 )

→ ( 4x - √3 )( √3 + 2 )

Either,

→ 4x - √3 = 0.

→ x = √3/ 4.

Or,

→ √3x + 2 = 0.

→ x = - 2 / √3.

 \tt \dagger \:  \:  \:  \:  \: 4 \sqrt{3}  {x}^{2}  + 5x - 2 \sqrt{3} .

 \tt \dagger \:  \:  \:  \:  \: a {x}^{2}  + bx + c.

Where as,

  • a = 4√3.
  • b = 5.
  • c = - 2√3.

Let Try to solve by Quadratic Formula.

 \dagger \:  \:  \:  \:  \:  \boxed{ \tt{x =  \dfrac{ - b \pm \sqrt{  {b}^{2}  - 4ac} }{2a} }}

 \tt  :  \implies x =  \dfrac{ - 5\pm \sqrt{  {(5)}^{2}  - 4 \times 4 \sqrt{3} \times  - 2 \sqrt{3}  } }{2 \times 4 \sqrt{3} }

 \tt  :  \implies x =  \dfrac{ - 5\pm \sqrt{  25   +  96  } }{  8 \sqrt{3} }

 \tt  :  \implies x =  \dfrac{ - 5\pm \sqrt{  121  } }{  8 \sqrt{3} }

 \tt  :  \implies x =  \dfrac{ - 5\pm 11 }{  8 \sqrt{3} }

Either,

 \tt  :  \implies x =  \dfrac{ - 5 +  11 }{  8 \sqrt{3} }

 \tt  :  \implies x =  \dfrac{ 6}{  8 \sqrt{3} }

 \tt  :  \implies x =  \dfrac{3  }{  4 \sqrt{3} }

 \tt  :  \implies x =  \dfrac{3  }{  4 \sqrt{3} } \times  \dfrac{ \sqrt{3} }{ \sqrt{3} }

 \tt  :  \implies x =  \dfrac{3 \sqrt{3}   }{  12}

 \tt  :  \implies x =  \dfrac{\sqrt{3}   }{  4 }

Or,

 \tt  :  \implies x =  \dfrac{ - 5 - 11 }{  8 \sqrt{3} }

 \tt  :  \implies x =  \dfrac{ - 16 }{  8 \sqrt{3} }

 \tt  :  \implies x =  \dfrac{ - 2}{   \sqrt{3} }

 \tt  :  \implies x =  \dfrac{ - 2}{   \sqrt{3} } \times  \dfrac{ \sqrt{3} }{ \sqrt{3} }

 \tt  :  \implies x =  \dfrac{ - 2 \sqrt{3} }{  3 }

Therefore, the value of x is - 2 √3 / 3 and 3 / 4√3.

Similar questions