Math, asked by chheku54, 2 months ago

factorise"
64a {}^{6}  - b {}^{6}
can you give me this ans in a simple way ​

Answers

Answered by shreemanlegendlive
4

Question :

Factorise :

\tt 64{a}^{2} - {b}^{2}

Identity :

\tt {x}^{2} - {y}^{2} = (x-y)(x+y)

Solution :

 \tt 64{a}^{2} - {b}^{2}

 \tt \implies {(8a)}^{2} - {b}^{2}

\tt \implies (8a-b)(8a+b)

\tt 64{a}^{2} - {b}^{2} = (8a-b)(8a+b)

Some other identities :

 \tt {(a+b)}^{2} = {a}^{2} + 2ab + {b}^{2}

 \tt {(a-b)}^{2} = {a}^{2} - 2ab + {b}^{2}

 \tt {(a+b)}^{3} = {a}^{3} + 3{a}^{2}b + 3a{b}^{2} + {b}^{3}

 \tt {(a-b)}^{3} = {a}^{3} - 3{a}^{2}b + 3a{b}^{2} - {b}^{3}

Answered by ⲘⲓssRσѕє
6

Answer:

\huge \bold  {\fbox{\underline \orange{ Answer \: ❦}}}

64 {a}^{2}  -  {b}^{2}  =  ({4a}^{2})^{3} -  ({b}^{2})^{3} \\  \\  = ( {4a}^{2} -  {b}^{2})(16 {a}^{4}  + 4 {a}^{2} {b}^{2}  +  {b}^{4} ) \\  \\  = (2a + b)(2a - b) (16 {a}^{4} +  4 {a}^{2} {b}^{2} +   {b}^{4}  )

Similar questions