Math, asked by MsMusk, 9 months ago

Factorise :-  {6x}^{2} - 19x - 7

Answers

Answered by MrChauhan96
20

\bf\blue{\underline{\boxed{Question}}}

\:

\small\tt{6x^{2} - 19x - 7\: }

\:

\bf\blue{\underline{\boxed{Solution}}}

\:

\small\tt{6x^{2} - 19x - 7\: }

\small\tt{6x^{2} -21x +2x -7}

\small\tt{3x(2x-7) +1 (2x-7)}

\small\tt{(3x+1)\:(2x-7)}

\:

\small\tt{3x\:+1\:=\:0\:}

\small\tt\red{\underline{\boxed{x\:=\:{\frac{-1}{\:\:\:3}}}}}

\:

\small\tt{2x\:-7\:=\:0\:}

\small\tt\red{\underline{\boxed{x\:=\:{\frac{7}{2}}}}}

\:

\bf\blue{\underline{\boxed{Hope\:It\: Help\:You}}}

Answered by Uriyella
11

 \huge\sf \green{\underline{\red{\underline{\blue{\underline{\orange{Question :-}}}}}}}

Factorise :-  {6x}^{2} - 19x - 7

 \huge\sf \green{\underline{\red{\underline{\blue{\underline{\orange{Solution:-}}}}}}}

 {6x}^{2}  - (19)x - 7

 {6x}^{2}  - ( - 2   +   21)x - 7

Apply distributive property:

 {6x}^{2}  + 2x - 21x - 7

Now,

Separate the factor out of the Greater Common Factor from each group:

Now,

Make a group of first two terms & last two terms.

( {6x}^{2}  + 2x) - 21x - 7

Again,

Separate the factor out the G.C.F. ( Greatest Common Factor ) from each group.

2x(3x  + 1) - 7(3x + 1)

Therefore,

The Factorisation of  {6x}^{2} - 19x - 7 is  (3x+1) (2x-7)

Similar questions