Math, asked by IndranilChakraborty, 8 months ago

Factorise
 {a}^{2}  - 1 - 2x -  {x}^{2}



Answers

Answered by Cynefin
9

━━━━━━━━━━━━━━━━━━━━

Answer

♦️To factorise:

  •  \large{ \rm{  {a}^{2} - 1 - 2x -  {x}^{2}}}

━━━━━━━━━━━━━━━━━━━━

Explanation of Q.

We know for doing factorisation, we must know the basic identities i.e algebraic identities. An identity is a expression which satisfy for all value of variable.

♠️Some basic identities:

\large{ \rm{(a  +  b) {}^{2} =  {a}^{2}  +  2ab +  {b}^{2}}} \\  \\  \large{ \rm{(a - b) {}^{2}  =  {a}^{2}   - 2ab +  {b}^{2} }} \\  \\  \large{ \rm{ {a}^{2} -  {b}^{2} = (a + b)(a - b)}} \\  \\  \large{ \rm{( a + b) {}^{3}   =  {a}^{3}  + b {}^{3} + 3ab(a + b)}} \\  \\  \large{ \rm{(a - b) {}^{3} =  {a}^{3}  -  {b}^{3} - 3ab(a - b)}}

While solving this question, we will use (a + b)^2 and a^2-b^2.

━━━━━━━━━━━━━━━━━━━━

Solution:

\large{ \rm{ \rightarrow {a}^{2} - 1 - 2x  -  {x}^{2}}} \\  \\  \rm{ \green{this \: can \: be \: written \: as....}}\\  \\ \large{ \rm{ \rightarrow  {a}^{2}  - (1 + 2x +  {x}^{2})}}   \\  \\  \rm{ \green{by \: using \: (a + b) {}^{2}  =  {a}^{2}  + 2ab +  {b}^{2} }} \\ \\ \large{ \rm{ \rightarrow  {a}^{2}  - \{{(x)}^{2} + 2 \times x \times 1 + (1) {}^{2}  \}}} \\  \\ \large{ \rm{ \rightarrow  {a}^{2} - (x + 1) {}^{2} }} \\  \\  \rm{ \green{by \: using \:  {a}^{2} -  {b}^{2} = (a + b)(a - b)}}   \\ \\ \large{ \rm{ \rightarrow \{a + (x + 1)\}\{(a - (x + 1)\}}} \\  \\ \large{ \rightarrow \boxed{ \rm{ \red{  (a  + x + 1)(a- x - 1)}}}}

♠️Hence, Factorised!

━━━━━━━━━━━━━━━━━━━━

Answered by snehitak7
0

Answer:

(a+x+1)(a-x+1)

we arrange the terms and get

a^{2}-(x^{2}+2x+1)\\

we can write that as

a^{2}-(x(x+1)+1(x+1))

a^{2}-(x+1)^{2}

by using the formula a^2-b^2=(a+b)(a-b)

a^2-(x+1)^2=(a+x+1)(a-x+1)

Similar questions