Factorise:
Answers
Answered by
9
- At first we have take common terms like (b + 1)
- Then (b + 1) will be common from both sides.
- Then we can write (ab - 1)
- And finally the result will be (ab - 1) (b + 1)
Answered by
5
We have to factorise [ab² + (a - b)b - 1].
ab² + (a - 1)b - 1
= ab² + ab - b - 1
= ab(b + 1) - 1(b + 1)
= (b + 1)(ab - 1)
Identities:-
- (a + b)² = a² + b² + 2ab
- (a - b)² = a² + b² - 2ab
- a² - b² = (a + b)(a - b)
- x² + (a + b)x + ab = (x + a)(x + b)
- (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
- (a + b)³ = a³ + b³ + 3ab(a + b)
- (a - b)³ = a³ - b³ - 3ab(a - b)
- a³ - b³ (Factor) = (a - b)(a² + ab + b²)
- a³ - b³ (Value fetching) = (a - b)³ + 3ab(a - b)
- a³ + b³ (Factor) = (a + b)(a² - ab + b²)
- a³ + b³ (Value Finding) = (a + b)³ - 3ab(a + b)
- a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
- 4ab = (a + b)² - (a - b)²
- 2(a² + b²) = (a + b)² + (a + b)²
Similar questions