Math, asked by khanamafiya148, 9 months ago

Factorise:
ab^{2} + (a - 1)b - 1

Answers

Answered by Blossomfairy
9

\implies\sf{ab^{2} + (a - 1)b - 1}

\implies\sf{ {ab}^{2}  + ab - b - 1}

\implies\sf{ab(b  + 1) - 1(b  + 1)}

\green \bigstar\boxed{\sf{(ab - 1)(b + 1)}} \  \green\bigstar

\sf  \underline\purple{How \:  to \: Factorise \: ?}

  • At first we have take common terms like (b + 1)

  • Then (b + 1) will be common from both sides.

  • Then we can write (ab - 1)

  • And finally the result will be (ab - 1) (b + 1)
Answered by Hoaxen
5

We have to factorise [ab² + (a - b)b - 1].

ab² + (a - 1)b - 1

= ab² + ab - b - 1

= ab(b + 1) - 1(b + 1)

= (b + 1)(ab - 1)

Identities:-

  1. (a + b)² = a² + b² + 2ab
  2. (a - b)² = a² + b² - 2ab
  3. a² - b² = (a + b)(a - b)
  4. x² + (a + b)x + ab = (x + a)(x + b)
  5. (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
  6. (a + b)³ = a³ + b³ + 3ab(a + b)
  7. (a - b)³ = a³ - b³ - 3ab(a - b)
  8. a³ - b³ (Factor) = (a - b)(a² + ab + b²)
  9. a³ - b³ (Value fetching) = (a - b)³ + 3ab(a - b)
  10. a³ + b³ (Factor) = (a + b)(a² - ab + b²)
  11. a³ + b³ (Value Finding) = (a + b)³ - 3ab(a + b)
  12. a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
  13. 4ab = (a + b)² - (a - b)²
  14. 2(a² + b²) = (a + b)² + (a + b)²
Similar questions