Math, asked by sudiptaboruah73, 9 months ago


factorise
 \frac{ {x}^{3} }{64}  +  \frac{ {z}^{3} }{27}  +  \frac{xz}{4} ( \frac{x}{4}  +  \frac{z}{3} )

Answers

Answered by RvChaudharY50
61

Qᴜᴇsᴛɪᴏɴ :-

  • Factorise :- (x³/64) + (z³/27) + (xz/4)[(x/4) + (z/3)]

Sᴏʟᴜᴛɪᴏɴ :-

→ (x³/64) + (z³/27) + (xz/4)[(x/4) + (z/3)]

→ (x/4)³ + (z/3)³ + (x/4) * z * [(x/4) + (z/3)]

Multiply & Divide by 3

→ (x/4)³ + (z/3)³ + 3 * (x/4) * (z/3) * [(x/4) + (z/3)]

Comparing it with , + + 3 * a * b [ a + b ] = (a + b)³

→ a = (x/4)

→ b = (z/3)

So,

[(x/4) + (z/3)]³

→ [(x/4) + (z/3)] * [(x/4) + (z/3)] * [(x/4) + (z/3)] (Ans.)


BrainlyRaaz: Nice ❤️
Anonymous: Perfect
Answered by ItzArchimedes
90

SOLUTION:-

→ x³/64 + z³/27 + xz/4 (x/4 + z/3)

→ (x/4)³ + (z/3)³ + (x/4) × z × [(x/4) + (z/3)]

Multiplying and dividing with 3

(x/4)³ + (z/3)³ + 3 × (x/4) × (z/3) × [(x/4) + (z/3)]

It is in the form of (a + b)³ = + + 3ab(a + b)

Then,

→ [(x/4) + (z/3)]³

Using

♦ (a + b)³ = (a + b)(a + b)(a + b)

→ [(x/4) + (z/3)] × [(x/4) + (z/3)] × [(x/4) + (z/3)]

Hence , factorised


Anonymous: Nice one
Similar questions