Math, asked by Anonymous, 1 month ago

factorise
 \rm \:  {27x}^{3}+ {y}^{3} + {z}^{3} -9xyz

Answers

Answered by ShiningBlossom
45

Factorise

 \sf \: {27x}^{3}+ {y}^{3} + {z}^{3} -9xyz

 \sf \longrightarrow  {3x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3 \times 3x \times y \times z

\sf \longrightarrow (3x + y + z) [{(3x)}^{3}  +  {y}^{2} +  {z}^{2} - 3xyz - yz - z \times 3x ]

\sf \longrightarrow (3x + y + z)( {9x}^{2}  +  {y}^{2}  +  {z}^{2}  - 3xy - yz - 3xz)

It helps you.

@ShiningBlossom

Answered by snitavk
5

Answer:

27x3+y3+z3−9xyz

\sf \longrightarrow {3x}^{3} + {y}^{3} + {z}^{3} - 3 \times 3x \times y \times z⟶3x3+y3+z3−3×3x×y×z

\sf \longrightarrow (3x + y + z) [{(3x)}^{3} + {y}^{2} + {z}^{2} - 3xyz - yz - z \times 3x ]⟶(3x+y+z)[(3x)3+y2+z2−3xyz−yz−z×3x]

\sf \longrightarrow (3x + y + z)( {9x}^{2} + {y}^{2} + {z}^{2} - 3xy - yz - 3xz)⟶(3x+y+z)(9x2+y2+z2−3xy−yz−3xz)

plz mark me brainlist

Similar questions