Math, asked by AnanyaBaalveer, 1 day ago

Factorise
 {(x - 2y)}^{2}  - 5(x - 2y) + 6
Please fast​

Answers

Answered by KoulikRoy
6

Answer:

(x-y-3). (x-y-2)

Step-by-step explanation:

(x-2y)² - 5(x-y) + 6

a² - 5a +6... Let (x-y) = a

=a²-(3+2) a +6

= a²-3a - 2a +6

= a. ( a-3) -2. (a-3)

= (a-3) . (a-2)

= (x-y-3). (x-y-2)... Since, a= (x-y).

Hope this will help.. Please mark me the brainliest if you like the answer..Thanks dear

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  {(x - 2y)}^{2} - 5(x - 2y) + 6 \\

Let assume that

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \rm{ \:x - 2y = z \: }} \\

So, above expression can be rewritten as

\rm \:  =  \:  {z}^{2} - 5z + 6 \\

On splitting the middle terms, we get

\rm \:  =  \:  {z}^{2} - 3z - 2z + 6 \\

\rm \:  =  \: ( {z}^{2} - 3z) - (2z - 6) \\

\rm \:  =  \: z(z - 3) - 2(z - 3) \\

\rm \:  =  \: (z - 3)(z - 2) \\

On substituting the value of z, we get

\rm \:  =  \: (x - 2y - 3)(x - 2y - 2) \\

Hence,

\rm \:  \:  \:  \:  \:  \:  \: {(x - 2y)}^{2} - 5(x - 2y) + 6 \\ \\   = \rm \:  \: (x - 2y - 3)(x - 2y - 2) \\

\rule{190pt}{2pt}

Basic Concept Used :-

Splitting of middle terms :-

In order to factorize  ax² + bx + c we have to find numbers m and n such that m + n = b and mn = ac.

After finding m and n, we split the middle term i.e bx in the quadratic equation as mx + nx and get the required factors by grouping the terms.

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions