Math, asked by SonuBisht, 1 year ago

Factorise:
 {x}^{3}-23 {x}^{2}  + 142x - 120

Answers

Answered by Anonymous
83
\huge\underline\mathfrak{Question-}

 = > x^{3} - 23x^{2} + 124x - 120

\huge\underline\mathfrak{Answer-}

 = > (x - 12)(x - 10)(x - 1)

\small\underline\mathfrak{Step\:By\:Step\: Explanation\:}-

 = > {x}^{3} - {23x}^{2} + 22x + 120x - 120

 = > {x}^{3} - 23x^{2} + 22x + 120x - 120

 = > {x}^{2} (x - 1) - 22x(x - 1) + 120(x - 1)

 = > ( {x}^{2} - 22x + 120)(x - 1)

 = > (x^{2} - 10x - 12x + 120)(x - 1)

 = > (x(x - 10) - 12(x - 10))(x - 1)

 = > (x - 12)(x - 10)(x - 1)

xishitaghoshx: Beautifully presented and well explained..!♥️
priya6386: awesome answer ❤️
xishitaghoshx: ♥️✌
priya6386: wlc ❤️❤️
Answered by Anonymous
45
Solutions :-


Let \: \:p(x) \: {x}^{3}-23 {x}^{2} + 142x - 120

Factors of - 120 = ±1, ±2, ±3, ±4, ±5, ±6, ±8, ±10, ±12, ±15, ±20, ±24, ±30, ±60

Taking the value of x = 1

p(1) \: {1}^{3}-23  \times {1}^{2} + 142 \times 1 - 120 \\  \\  = >  1 - 23 + 142 - 120 = 0
So,
x = 1 => x - 1 = 0


Now,   \\ <br />Divide  \:  \:  {x}^{3}-23 {x}^{2} + 142x - 120 \:  \: by \:  \: x - 1 \\   \\  We\:  \: get,   \\  \\   =  &gt; \frac{{x}^{3}-23 {x}^{2} + 142x - 120}{x - 1}  \\  \\  =  &gt; (x - 12)(x - 10)


Therefore,   \\  \\  {x}^{3}-23 {x}^{2} + 142x - 120 = (x - 1)(x - 12)(x - 10)

CrimsonHeat: gr8 da
Anonymous: thanks :)
Anonymous: thank you :)
Similar questions