Factorise
Answers
Answered by
0
Answer:
Given :-
➪ x³ - 9y³ - 3xy(x - y)
Solution :-
➪ x³ - 9y³ - 3xy(x - y)
➭ x³ - 9y³ - 3x²y + 3xy²
➭ x³ - 3x²y + 3xy² - 9y³
➭ x³ - 3x²y + 3xy² - y³ - 8y³
➭ (x - y)³ - (2y)³
➭ (x - y - 2y) {(x - y)² + (x - y) × 2y + (2y)²}
➭ (x - 3y) {(x)² - 2 × x × y + (y)² + 2xy - 2y² + 4y²}
➭ (x - 3y) (x² - 2xy + y² + 2xy - 2y² + 4y²)
➭ (x - 3y) (x² - 2xy + 2xy + y² - 2y² + 4y²)
➭ (x - 3y) (x² - y² + 4y²)
➭ (x - 3y) (x² + 3y²)
The value of x³ - 9y³ - 3xy(x - y) is
(x - 3y) (x² + 3y²)
Formula used :-
➪ (a - b)²
➭ a² - 2ab + b²
➪ (a - b)³
➭ a³ - 3a²b + 3ab² - b³
➪ a³ - b³
➭ (a - b) (a² + ab + b²)
Similar questions