factorise the equadratic trinomials :x*
2+10x+24
Answers
Answer:
Step-by-step explanation:X²+10X+24=0 from the eqution, a=+1,b=+10,c=24
Method 1: Using factoisation by grouping
To factorise, we look a number when we multiply it gives "ac" and when when sumup those numbers it gives "b"
Factors of 24= 1,2,3,4,6,12,24 therefore the numbers are 6 and 4
⇒X²+6X+4X+24=0
⇒X(X+6)+4(X+6)=0
⇒(X+6)(X+4)=0
⇒X+6=0 or X+4=0
⇒X= -6 or X= -4
Method 2; Using formula method X= [-b ± √(b²-4ac)]/2a = (-b ± √Δ)/2a
Δ=b²-4ac
=10²-4(1)(24)
=100-96
Δ =4
X=(-b ± √Δ)/2a = (-10±√4)/2(1)
= (-10±2)/2
= (-10+2)/2 or (-10-2)/2
= -8/2 or -12/2
X = -4 or -6
QUESTION SHOULD BE:
- Factorise the quadrtic polynomial: x²+10x+24.
ANSWER:
- Factorisation of the above expression is (x+4)(x+6).
GIVEN:
- P(x) = x²+10x+24
TO FIND:
- Factorise the above expression.
SOLUTION:
= x²+10x+24
= x²+4x+6x+24
= (x²+4x)+(6x+24)
= x(x+4) +6(x+4)
= (x+4)(x+6)
Factorisation of the above expression is (x+4)(x+6).
NOTE:
Some important formulas:
(a+b)² = a²+b²+2ab
(a-b)² = a²+b²-2ab
(a+b)(a-b) = a²-b²
(a+b)³ = a³+b³+3ab(a+b)
(a-b)³ = a³-b³-3ab(a-b)
a³+b³ = (a+b)(a²+b²-ab)
a³-b³ = (a-b)(a²+b²+ab)
(a+b)² = (a-b)²+4ab
(a-b)² = (a+b)²-4ab