Math, asked by kiranshaggu2518, 3 months ago

factorise the equation
p⁴-81​

Answers

Answered by Aklavya1
4

Answer:

(p²+9)(p+3)(p-3)

Step-by-step explanation:

=>p⁴-81

=>(p²+9)(p²-9)

=>(p²+9)(p+3)(p-3)

Answered by Anonymous
2

\mathbb{\bold{\underline{ANSWER}}}

\fbox{\textsf{(p$^{\textsf{2}}$ + 9)(p + 3)(p - 3)}}

\mathbb{\bold{\underline{EXPLANATION:}}}

\textsf{p$^{\textsf{4}}$ - 81} \to \textbf{(p$^{\textbf{2}})$^{\textbf{2}}$ - 9$^{\textbf{2}}$}

  \bullet \textbf{ Using the identity : a$^{\textbf{2}}$ - b$^{\textbf{2}}$ = (a + b)(a - b)}

\star \texttt{ a = p$^{\texttt{2}}$}

\star \texttt{ b = 9}

\to \textsf{(a + b)(a - b) = (p$^{\textsf{2}}$ + 9)(p$^{\textsf{2}}$ - 9)}

\to \to \textbf{p$^{\textbf{4}}$ - 81 = (p$^{\textbf{2}}$ + 9)(p$^{\textbf{2}}$ - 9)}

\textsf{p$^{\textsf{2}}$ - 9 $\to$ } \textbf{(p)$^{\textbf{2}}$ - 3$^{\textbf{2}}$}

  \bullet \textbf{ Using the identity : a$^{\textbf{2}}$ - b$^{\textbf{2}}$ = (a + b)(a - b)}

\star \texttt{ a = p}

\star \texttt{ b = 3}

\to \textsf{(a + b)(a - b) = (p + 3)(p - 3)}

\star \textsf{ So now, we have 3 factors : (p$^{\textsf{2}}$ + 9) , (p + 3) , (p - 3) }

\therefore \textbf{p$^{\textbf{4}}$ - 81 = (p$^{\textbf{2}}$ + 9)(p + 3)(p - 3)}

Similar questions