factorise the expression a^2-b^2-c^2-2bc+a+b+c
Answers
Answered by
1
Step-by-step explanation:
a2+b2+c2+2ab−2ac−2bc=−(b+c)2
⟹(a)2+(b)2+(−c)2+2(a)(b)+2(a)(−c)+2(b)(−c)+(b+c)2=0
⟹(a+b−c)2+(b+c)2=0
⟹(a+b−c)2−{(b+c)i}2=0
⟹{a+b−c−(b+c)i}{a+b−c+(b+c)i}=0
⟹{a+b(1−i)−c(1+i)}{a+b(1+i)−c(1−i)}=0
Answered by
6
Use Identity :-
Then...
Hence, Proved...☺️
Similar questions