Math, asked by Anonymous, 10 months ago

factorise the expression a^2-b^2-c^2-2bc+a+b+c ​

Answers

Answered by abhinav979verma
1

Step-by-step explanation:

a2+b2+c2+2ab−2ac−2bc=−(b+c)2

⟹(a)2+(b)2+(−c)2+2(a)(b)+2(a)(−c)+2(b)(−c)+(b+c)2=0

⟹(a+b−c)2+(b+c)2=0

⟹(a+b−c)2−{(b+c)i}2=0

⟹{a+b−c−(b+c)i}{a+b−c+(b+c)i}=0

⟹{a+b(1−i)−c(1+i)}{a+b(1+i)−c(1−i)}=0

Answered by Anonymous
6

Use Identity :-

 =  >  {(a + b + c)}^{2}

Then...

 =  > (a + b + c) \times (a + b + c)

 =  > a(a + b + c) + b(a + b + c) + c(a + b + c)

 =  >  ({a}^{2}  + ab + ac) + (ab +  {b}^{2}  + bc) + (ac + bc +  {c}^{2})

 =  >  {a}^{2}  + ab + ac + ab +  {b}^{2} + bc + ac + bc +  {c}^{2}

 =  >  {a}^{2}  + 2ab + 2ac + {b}^{2}  + 2bc +  {c}^{2}

 =  >  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ac

Hence, Proved...☺️

Similar questions