Math, asked by AnanyaBaalveer, 11 hours ago

FACTORISE THE EXPRESSION
\large\underline{\bf{ \frac{1}{8}  {a}^{2} +  \frac{1}{4}  {a}^{2}b +  \frac{1}{6}  {ab}^{2}  +  \frac{1}{27}   {b}^{3}  }}

Answers

Answered by talpadadilip417
5

\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

 \rule{300pt}{0.1pt}

First method :-

\begin{array}{l} \\  \\  \displaystyle \rm \frac{1}{8} a^{3}+\frac{1}{4} a^{2} b+\frac{1}{6} a b^{2}+\frac{1}{27} b^{3} \\  \\  \displaystyle \rm=\left(\frac{1}{2} a\right)^{3}+3\left(\frac{1}{2} a\right)^{2}\left(\frac{1}{3} b\right)+3\left(\frac{1}{2} a\right)\left(\frac{1}{3} b\right)^{2}  +\left(\frac{1}{3} b\right)^{3} \\  \\ \displaystyle  \rm=\left(\frac{1}{2} a+\frac{1}{3} b\right)^{3}\\  \\   \color{magenta}\boxed{ \displaystyle \rm=\left(\frac{1}{2} a+\frac{1}{3} b\right)\left(\frac{1}{2} a+\frac{1}{3}b\right)\left(\frac{1}{2} a+\frac{1}{3} b\right) }\end{array}

Second method :-

We have,

\[ \begin{array}{l}      \displaystyle\rm \frac{1}{8} a^{3}+\frac{1}{4} a^{2} b+\frac{1}{6} a b^{2}+\frac{1}{27} b^{3} \\\\  \displaystyle\rm  =\left(\frac{1}{2} a\right)^{3}+\left(\frac{1}{3} b\right)^{3}+\frac{1}{2} a b\left(\frac{1}{2} a+\frac{1}{3} b\right) \\\\  \displaystyle\rm  =\left(\frac{1}{2} a\right)^{3}+\left(\frac{1}{3} b\right)^{3}+\frac{1}{2} \cdot a b\left(\frac{1}{2} a+\frac{1}{3} b\right) \\\\  \displaystyle\rm  =\left(\frac{1}{2} a\right)^{3}+\left(\frac{1}{3} b\right)^{3}+3 \cdot\left(\frac{a}{2}\right)\left(\frac{b}{3}\right)\left(\frac{1}{2} a+\frac{1}{3} b\right) \\\\  \displaystyle\rm  =\left(\frac{1}{2} a+\frac{1}{3} b\right)^{3}\\  \\  \color{orangered}\boxed{  \displaystyle\rm =\left(\frac{1}{2} a+\frac{1}{3} b\right)\left(\frac{1}{2} a+\frac{1}{3}b\right)\left(\frac{1}{2} a+\frac{1}{3} b\right) }\end{array} \]

Third method :-

 \text{Let \(  \rm\dfrac{1}{2} a=x \) and \( \rm \dfrac{1}{3} b= \) \( \rm y ; \),}

then,

 \text{Given expression \(  \rm=x^{3}+y^{3}+\dfrac{1}{4} \)}

 \[ \begin{array}{l}  \displaystyle\rm (2 x)^{2}(3 y)+\frac{1}{6}(2 x)(3 y)^{2} \\\\  \displaystyle\rm =x^{3}+y^{3}+3 x^{2} y+3 . x y^{2} \\ \\  \displaystyle\rm=(x+y)^{3} \end{array} \]

[Putting the values of a, b, ]

\begin{array}{l} \displaystyle\rm  =\left(\frac{1}{2} a+\frac{1}{3} b\right)^{3} \\  \\ \color{violet}\boxed{  \displaystyle\rm =\left(\frac{1}{2} a+\frac{1}{3} b\right)\left(\frac{1}{2} a+\frac{1}{3}b\right)\left(\frac{1}{2} a+\frac{1}{3} b\right) } \end{array}

Similar questions