Math, asked by aaui52, 3 months ago

Factorise the expressions and then divide them as directed.

( 5x^2 + 70x – 160) ÷ ( 5x – 10)​

Answers

Answered by MaheswariS
0

\textbf{Given:}

\mathsf{\dfrac{5x^2+70x-160}{5x-10}}

\textbf{To find:}

\textsf{Simplified form of}\mathsf{\dfrac{5x^2+70x-160}{5x-10}}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\dfrac{5x^2+70x-160}{5x-10}}

\mathsf{=\dfrac{5(x^2+14x-32)}{5(x-2)}}

\mathsf{=\dfrac{x^2+14x-32}{x-2}}

\textsf{Factorize the numerator}

\mathsf{=\dfrac{x^2+16x-2x-32}{x-2}}

\mathsf{=\dfrac{x(x+16)-2(x+16)}{x-2}}

\mathsf{=\dfrac{(x+16)(x-2)}{x-2}}

\mathsf{=\dfrac{x+16}{------}}

\implies\mathsf{\dfrac{5x^2+70x-160}{5x-10}=x+16}

Answered by AbhinavRocks10
19

Step-by-step explanation:

\textbf{Given:}

\mathsf{\dfrac{5x^2+70x-160}{5x-10}5x−10 5x 2 +70x−160

\textbf{To find:}

\textsf{Simplified form of}\mathsf{\dfrac{5x^2+70x-160}{5x-10}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\dfrac{5x^2+70x-160}{5x-105x−105x 2 +70x−160

\mathsf{=\dfrac{5(x^2+14x-32)}{5(x-2)}}=5(x−2)5(x 2 +14x−32)

\mathsf{=\dfrac{x^2+14x-32}{x-2}}=x−2x 2 +14x−32

\textsf{Factorize the numerator}

\mathsf{=\dfrac{x^2+16x-2x-32}{x-2}}=x−2x 2 +16x−2x−32

\mathsf{=\dfrac{x(x+16)-2(x+16)}{x-2}}=x−2x(x+16)−2(x+16)

\mathsf{=\dfrac{(x+16)(x-2)}{x-2}}=x−2(x+16)(x−2)

\mathsf{=\dfrac{x+16}{------}}</p><p>{{−−−−−−x+16}}

\implies\mathsf{\dfrac{5x^2+70x-160}{5x-10}=x+16}⟹ 5x−105x 2 +70x−160	 =x+16

Similar questions