Math, asked by ShamuKaka, 1 year ago

factorise the following

Attachments:

Answers

Answered by pratik40
1
hi...

 {x}^{2} + \frac{1}{ {x}^{2} } - 11 = 0

(multiply \: by \: {x}^{2} )

 {x}^{4} + 1 - 11 {x}^{2} = 0

 {x}^{4} - 11 {x}^{2} + 1 = 0

let \: {x}^{2} \: be \: y

 {y}^{2} - 11y + 1 = 0

comparing \: with \\ \: a {y}^{2} + by + c = 0

a = 1 , b = -11 , c = 1
 {b}^{2} - 4ac = 117

By the formula method...

y = \frac{ - b + \sqrt{ {b}^{2} - 4ac } }{2a} or \frac{ - b - \sqrt{ {b}^{2} - 4ac } }{2a}

y = \frac{ - ( - 11) + \sqrt{117} }{2(1)} or \frac{ - ( - 11) - \sqrt{117} }{2(1)}

y = \frac{11 + \sqrt{117} }{2} or \: \frac{11 - \sqrt{117} }{2}

Re substituting
y = {x}^{2}

 {x}^{2} = \frac{11 + \sqrt{117} }{2 } or \: \frac{11 - \sqrt{117} }{2}

By taking square root to both sides

x = \sqrt{ \frac{11 + \sqrt{117} }{2} } \: or \sqrt{ \frac{11 - \sqrt{117} }{2} }

hope \: this \: helps
Similar questions